Efficient Online User Tracking

Martin Elsman
Zecure.com

July 2006

Abstract

We present a technique for identifying users efficiently and tracking
user behaviour. The technique makes use of a union-find data structure
for recording incoming events that provide evidence that other events in
fact come from the same user. The data structure is implemented in a
relational database. We describe the operations on this data structure
and show how the events that are inferred to come from a particular user
can be retrieved efficiently.

1 Introduction

Users of Internet Web sites are identified differently over time. For example,
when a user first visits a Web site, the user may only be identified by the IP
address at which the user is located (possibly a proxy) and perhaps by browser
type and screen resolution (if Javascript is supported by the browser). At the
first response, a user’s browser may have received a session cookie, which enables
a Web application to conclude that future requests made by the user in the
session are indeed made by that user. At some point during the session, the
user may sign up for a service by entering an email address, or login to the
system using a login name and a password for the system. In both cases, the
user reveals information that can be associated with the session cookie. Over
time, different session cookies are associated with the user, but all information
associated with the session cookies may be relevant for user tracking and user
behavior analysis.

1.1 Events and Elements

An event type has a name and is associated with zero or more element types, each
of which consists of a name, an associated regular expression, and an integer
indicating whether a particular element uniquely identifies a user. A value of
zero indicates that the element does not uniquely identify a user. Larger integers
guides which element value is used for printing (see the discussion below).

For recording requests (made by a user’s browser) and other facts, we use the
concept of an event. An event is associated with an event type €, a particular

point in time, and with zero or more elements, each of which is associated with
an element type and a value (which must match the regular expression of the
associated element type). The element types associated with an event type ¢
dictates the elements that must be associated with an event with event type e.

Whereas event types and element types are defined once for a particular Web
site, events and event elements are dynamic entities, which are created when a
user browses the Web site. For example, we may define the following element

types:

Element type Regular expression Unique Description

Cookie [a-zA-Z0-9]+ 1 Cookie stored in
user’s browser.

Email [.0a-zA-Z0-9_-]1+ 2 User email address.

URL [.a-z:/A-Z0-9_%-1+ O URL the wuser is

redirected from.

Based on the above element types, we may define the following event types:

Event type Element Types Description

Redirect [Cookie, URL] User is redirected from a
foreign web site.

Browse product [Cookie] User browses a product.

Add to cart [Cookie] User adds a product to
cart.

Checkout [Cookie, Email] User orders content of
cart—receipt sent to user.

Bounce [Email] Email bounces.

Given the above event types, consider the following sequence of events:

Time Event Type Elements (on the form value:type)

t Redirect aa:Cookie, www.google.com:URL]
t+2s Redirect ab:Cookie]
t+3s Add to cart ab:Cookie]

t+4s Checkout ab:Cookie, asdsa@adfs.com:Email]
t+30s Add to cart aa:Cookie]
t+32s Bounce asdsa@adfs.com:Email]

[
[
[
t-+4s Browse product [aa:Cookie]
[
[
[
t+52s Checkout [aa:Cookie, hans@gmail . com:Email]

The first event is registered at time ¢ and the last event at time t 4+ 52s. By
simple reasoning, based on the fact that elements with element types Email and
Cookie uniquely identifies a user, one can conclude that the user with email
address hans@gmail.com is first redirected from www.google.com, where after
the user browses a product, adds a product to a cart, and, finally, checks out
the cart, with the entire session taking 52 seconds.

As we shall see in the following, we make use of a union-find data structure
for establishing efficiently that two events comes from the same user.

We shall not be concerned here about how the events and associated elements
are obtained (be it from a log file or by XML requests to the server hosting
the technology), but rather focus on how events are represented and how user
information is gathered and maintained, incrementally, so that all events related
to a particular user may be found efficiently (in time almost proportinal to the
number of events found). Moreover, we shall describe how new event information
is added to the representation in almost constant time.

2 Outline

In Section 3, we present a data model for events, based on an underlying union-
find data structure. In Section 4, we describe how a system can refer to a user
independently of the id of the ECR. In Section 5, we describe how the events
associated with a user may be retrieved efficiently. In Sections 6 and 7, we
describe related and future work and conclude.

3 The Data Model

3.1 Element Types and Event Types

The following entity definitions define element types and event types. Event

types are associated with element types through the entity event_type_element_type.

CREATE TABLE element_type (

id SERIAL PRIMARY KEY,
name VARCHAR UNIQUE NOT NULL,
regex VARCHAR NOT NULL,
unique_ident INTEGER DEFAULT O NOT NULL,
)
CREATE TABLE event_type (
id SERIAL PRIMARY KEY,
name VARCHAR UNIQUE NOT NULL

)

CREATE TABLE event_type_element_type (
id SERIAL PRIMARY KEY,
event_type_id INTEGER REFERENCES event_type(id) NOT NULL,
element_type_id INTEGER REFERENCES element_type(id) NOT NULL,
UNIQUE (event_type_id, element_type_id)

);

3.2 Union-Find Data Structure for Representing Users

The following entities constitute the heart of the union-find data structure. As
we shall see later, each event is associated with an equivalent class representative
(ECR), which is used for accumulating event information when events are added

incrementally. ECR’s can be unioned efficiently, which means that events can
be unioned efficiently (e.g., two events should be unioned when the events have
identical session cookies or email addresses as elements).

We use Tarjan’s union-find algorithm [4], which means that union and find
operations work by updating and compressing links (using path-halving). An-
other possibility, which we shall return to in Section 7, would be to use explicit
substitutions.

The data model for the union-find data structure consists of two entities
ecr_info and ecr_link:

CREATE TABLE ecr_info (

id BIGSERIAL PRIMARY KEY,

ecr_rank INTEGER NOT NULL DEFAULT O,

first_at TIMESTAMP DEFAULT now() NOT NULL,
last_at TIMESTAMP DEFAULT now() NOT NULL,
event_count INTEGER NOT NULL DEFAULT 1,
unique_ident_value VARCHAR, -- Name of user derived from

-- element with element_type of
-- highest unique_ident value.
unique_ident_element_type_id INTEGER REFERENCES element_type(id),

updated_at TIMESTAMP DEFAULT now() NOT NULL
)
CREATE TABLE ecr_link (

id BIGINT NOT NULL UNIQUE,

next_id BIGINT NOT NULL,

UNIQUE (id, next_id)

)

Accumulated event information is stored in ecr_info rows. For instance,
we keep track of the total number of events (event_count), the points in time
for the first and last events (first_at and last_at), the element type with the
highest unique_ident values, and the associated value for this element type
(the last two are used for pretty printing a user).

We shall refer to rows in the ecr_info table as FCR-nodes and rows in the
ecr_link table as ECR-links. Moreover, we shall refer to id’s in the ecr_info
and ecr_link tables as FCR-ids. An ECR-id is valid if it appears as id in a
row in the ecr_info table.

The following function implements the find operation for the union-find data
structure. The function takes as argument an ECR-id and returns a valid ECR-
id in the sense that it refers to a row in the ecr_info table. The function
implements path-compression, by path halving, a technique that allows for the
recursive call to be a tail-call.

CREATE OR REPLACE FUNCTION
ecr_find (aid bigint) RETURNS bigint AS $$
DECLARE
nid bigint;

nnid bigint;

BEGIN
SELECT INTO nid next_id FROM ecr_link WHERE id = aid;
IF NOT FOUND THEN RETURN aid; END IF;

-- path halving
SELECT INTO nnid next_id FROM ecr_link WHERE id = nid;
IF NOT FOUND THEN RETURN nid;

ELSE
UPDATE ecr_link SET next_id = nnid WHERE id = aid;
RETURN ecr_find(nnid); -- tail call!
END IF;
END;

$$ LANGUAGE plpgsql;

The data model allows for two ECR-nodes to be unioned as follows:
1. Choose the ECR-node with the lowest rank as the surviving ECR-node.

2. Merge information in the non-surviving ECR-node into the surviving ECR-
node and increase the ecr_rank value in the surviving ECR-node by one.

3. Add an ECR-link from the non-surviving ECR-node to the surviving ECR-
node.

4. Delete the non-surviving ECR-node.

Here is the function ecr_info_union for merging the information in the
non-surviving ECR-node into the surviving ECR~node:

CREATE OR REPLACE FUNCTION
ecr_info_union(ecr_idl bigint, ecr_id2 bigint, ecr_id_new bigint)
RETURNS void AS $$
DECLARE
el RECORD;
e2 RECORD;
first_at_new timestamp;
last_at_new timestamp;
event_count_new integer;
unique_ident_new integer;
unique_ident_value_new varchar;
unique_ident_element_type_id_new integer;
ecr_id_del bigint;
BEGIN
SELECT INTO el * FROM ecr_info WHERE id
SELECT INTO e2 * FROM ecr_info WHERE id

ecr_idil;
ecr_id2;

first_at_new := min_timestamp(el.first_at,e2.first_at);
last_at_new := max_timestamp(el.last_at,e2.last_at);
event_count_new := el.event_count + e2.event_count;
unique_ident_new := max_int(el.unique_ident, e2.unique_ident);

-- Find the best unique_ident_value
IF unique_ident_new = el.unique_ident THEN

unique_ident_value_new := el.unique_ident_value;

unique_ident_element_type_id_new := el.unique_ident_element_type_id;
ELSE

unique_ident_value_new := e2.unique_ident_value;

unique_ident_element_type_id_new := e2.unique_ident_element_type_id;
END IF;

-- Update the ECR-node that was chosen as the new ECR
UPDATE ecr_info
SET first_at = first_at_new,

last_at = last_at_new,
event_count = event_count_new,
unique_ident = unique_ident_new,
unique_ident_value = unique_ident_value_new,
unique_ident_element_type_id = unique_ident_element_type_id_new,
ecr_rank = ecr_rank + 1,
updated_at = now()

WHERE id = ecr_id_new;

-- Delete the no-longer used ECR-node
IF ecr_id_new = ecr_idl THEN ecr_id_del = ecr_id2;
ELSE ecr_id_del = ecr_idil;
END IF;
DELETE FROM ecr_info WHERE id = ecr_id_del;
END;
$$ LANGUAGE plpgsql;

When updating the surviving ECR-node, the updated_at field is also updated
to the present time. The update_at value is used by the function in Section 5
for retrieving events made by a user.

The function ecr_union, for unifying two ECR-nodes (i.e., users), looks as
follows:

CREATE OR REPLACE FUNCTION
ecr_union(idl bigint, id2 bigint) RETURNS bigint AS $$
DECLARE
ecr_idl bigint;
ecr_id2 bigint;
ecr_id bigint; -- new chosen ecr_id (either ecr_idl or ecr_id2)
ecr_id_link bigint; -- the ecr_id that was not chosen
rankl integer;
rank2 integer;
BEGIN
ecr_idl := ecr_find(idl);
ecr_id2 := ecr_find(id2);
IF ecr_idl = ecr_id2 THEN RETURN ecr_idl; END IF;

SELECT INTO rankl ecr_rank FROM ecr_info WHERE id = ecr_idil;
SELECT INTO rank2 ecr_rank FROM ecr_info WHERE id = ecr_id2;

IF rankl < rank2 THEN

ecr_id := ecr_idil;

ecr_id_link := ecr_id2;
ELSE

ecr_id := ecr_id2;

ecr_id_link := ecr_idl;
END IF;

-- Choose ecr_id as new ecr; thus, let ecr_id_link point at ecr_id
INSERT INTO ecr_link(id, next_id) VALUES (ecr_id_link, ecr_id);
PERFORM ecr_info_union(ecr_idl,ecr_id2,ecr_id);
RETURN ecr_id;
END;
$$ LANGUAGE plpgsql;

Notice that the ECR-node with the lowest rank is chosen as the surviving ECR-

node.

3.3 Events and Elements

The data model for events and elements consists of the tables event and element,
each of which references the tables event_type and element_type, respectively.

CREATE TABLE event (

id BIGSERIAL PRIMARY KEY,
ecr_id BIGINT, -- References either ecr_link(id) or ecr_info(id)
ecr_id_updated_at TIMESTAMP DEFAULT now(), -- For using ecr_id as index
created_at TIMESTAMP DEFAULT now() NOT NULL,
event_type_id INTEGER REFERENCES event_type(id) NOT NULL
);
CREATE TABLE element (
id BIGSERIAL PRIMARY KEY,
event_id BIGINT REFERENCES event(id) NOT NULL,
element_type_id INTEGER REFERENCES element_type(id) NOT NULL,
value VARCHAR(255) NOT NULL,
UNIQUE(event_id, element_type_id)
);

As we shall see in Section 4, the attribute ecr_id_updated_at in the event
table is used for retrieving the events associated with a user efficiently.

Adding an event with associated elements to the data structure involves
inserting one row in the event table, inserting a row in the element table for
each element, and calling the following function element_unify with the id
attribute for each element:

CREATE OR REPLACE FUNCTION
element_unify(the_element_id bigint) RETURNS void AS $$

DECLARE
r record;
ecr record;
ecr_id bigint;
BEGIN
SELECT INTO r eet.unique_ident, ee.event_id,
ee.element_type_id, ee.value, e.ecr_id
FROM element_type eet
LEFT JOIN element ee ON ee.element_type_id = eet.id
LEFT JOIN event e ON e.id = ee.event_id
WHERE ee.id = the_element_id;

IF r.unique_ident > O THEN

-- maybe add element value to ECR-node
SELECT INTO ecr * FROM ecr_info WHERE id = ecr_find(r.ecr_id);
IF r.unique_ident > ecr.unique_ident THEN
UPDATE ecr_info
SET unique_ident = r.unique_ident,
unique_ident_value = r.value,
unique_ident_element_type_id = r.element_type_id
WHERE id = ecr.id;
END IF;

-- Look for another element with the same element type

-- and the same element value. It is sufficient to look
-- for just one such element (the argument for this claim
-- uses simple induction).

SELECT INTO ecr_id e.ecr_id
FROM element ee2
LEFT JOIN event e ON e.id = ee2.event_id
WHERE ee2.value = r.value
AND ee2.element_type_id = r.element_type_id
AND (ee2.event_id != r.event_id)
LIMIT 1;

IF FOUND THEN PERFORM ecr_union(r.ecr_id,ecr_id); END IF;
END IF;
END;
$$ LANGUAGE plpgsql;

The function element_unify is guided by the unique_ident attribute in the
element_type; only elements that uniquely identify a user may result in ECR-
nodes (i.e., users) being unified.

4 What Identifies a User?

A user is represented in the system by an ECR-node. However, it would not
be convenient to refer to a user using an ECR-id, since a valid ECR-id can
become invalid over time—when new events are added—and since it could make
sense periodically to garbage collect non-referred-to ECR-links (by updating
each referenced ECR-id in the datamodel with the result of executing a find
operation on the given ECR-id).

Instead, we can use element values with element types that uniquely iden-
tifies a user to locate a particular user. For example, given the element type
named Email, which is specified to identify uniquely a user, and a particular
email address, say hans@yahoo.com, the system can identify the ECR-id that
represents this user, if the user exists in the system.

5 Retrieving Events Related to a User

To find all events related to a customer (identified by ecr_id), we cannot simply
execute

SELECT * FROM event WHERE ecr_id = the_ecr_id 1)

since an ECR~id in the event table may identify a link to another ECR-node or
link (after a union of two ECR-nodes). On the other hand, using the correct

SELECT * FROM event WHERE ecr_find(ecr_id) = the_ecr_id

would be too expensive, since no index is used. To deal with this inefficiency,
we allow for the following SQL statement to be executed just before (1) is
executed:

UPDATE event SET ecr_id = ecr_find(ecr_id),
ecr_id_updated_at = now()
WHERE ecr_id_updated_at <= ecr_updated_at (2)
AND ecr_updated_at >= created_at 3

Here ecr_updated_at is the timestamp of the ECR-node in question. Con-
dition (2) specifies that we need only update ECR-ids pointing (transitively)
to ECR-nodes that have been updated since the ECR-id was updated. Condi-
tion (3) specifies that we need only update ECR-ids for those events that were
created before the pointed-to ECR-node was updated (due to a union).

Notice that b-tree indexes are used for making the above UPDATE statement
efficient. Here is a function ecr_id_update for executing the above update
statement based on an ecr_updated_at time stamp:

CREATE OR REPLACE FUNCTION
ecr_id_update (ecr_updated_at timestamp) RETURNS void AS $$
BEGIN
UPDATE event SET ecr_id = ecr_find(ecr_id),
ecr_id_updated_at = now()

WHERE ecr_id_updated_at <= ecr_updated_at
AND ecr_updated_at >= created_at;
END;
$$ LANGUAGE plpgsql;

6 Related Work

There is much related work in the area of tracking user behavior in a Web-based
environment and many commercial products available for user tracking, includ-
ing Opentracker (www.opentracker.net), a cookie-based solution for monitor-
ing user-behavior on a Web site. An alternative is the open source (Apache
License) solution phpOpenTracker, which is a framework for the analysis of
website traffic and visitor analysis, primarily focused on usability analysis.

As far as we are aware, none of the mentioned solutions allow for unifying
two separate users based posterior information that the two users are actually
identical.

Another area of related work deals with how events are collected. Atterer
et al. [1] uses a proxy-server to intercept a wide series of user events by adding
Javascript to pages automatically. Simpler solutions include inspecting log files,
both in common log file format (CLF) and extended common log file format
(ECLF) [3, 2].

7 Conclusion and Future Work

We have presented a technique for collecting user events online, which provide
efficient access to events made by users and which supports the possibility for
unifying two different users if posterior information indicates that the two users
are actually identical.

There are plenty of possibilities for future work. For instance, the solution
that we present is based on a union-find structure for implementing efficient
substitution of user-ids when two users are to be considered identical. An al-
ternative is to use explicit substitution, which, may ease the maintenance of an
index on the ecr_id attribute of the event entity. However, such a solution
would lead to an O(N) union operation of two users, where N is the maximum
number of events in an equivalence class.

Acknoledgments
Thanks to Bo Lorentsen for many great discussions concerning this work. Bo

is in fact the architect behind the data models for element types, event types,
elements, and events.

10

References

[1] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move: user
activity tracking for website usability evaluation and implicit interaction. In
15th international Conference on World Wide Web (WWW’06), pages 203
212. ACM Press, May 2006. Edinburgh, Scotland.

[2] Dan R. Greening. Tracking users—what marketers really want to know,
July 1999. http://www.webtechniques.com/archives/1999/07/greening/ .

[3] Philip Greenspun. Philip and Alex’s guide to Web publishing. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1999.

[4] Robert Endre Tarjan. Data structures and network algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

A Various plpgsql Utility Functions

CREATE OR REPLACE FUNCTION
min_timestamp(tl timestamp,t2 timestamp) RETURNS timestamp AS $$
BEGIN
IF t1 < t2 THEN RETURN t1;
ELSE RETURN t2;
END IF;
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION
max_timestamp(tl timestamp,t2 timestamp) RETURNS timestamp AS $$
BEGIN
IF t1 > t2 THEN RETURN t1;
ELSE RETURN t2;
END IF;
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION
max_int(tl integer,t2 integer) RETURNS integer AS $$
BEGIN
IF t1 > t2 THEN RETURN t1;
ELSE RETURN t2;
END IF;
END;
$$ LANGUAGE plpgsql;

11

