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Abstract. General-purpose massively parallel processors, such as GPUs,
have become common, but are difficult to program. Pure functional pro-
gramming can be a solution, as it guarantees referential transparency,
and provides useful combinators for expressing data-parallel computa-
tions. Unfortunately, higher-order functions cannot be efficiently imple-
mented on GPUs by the usual means. In this paper, we present a de-
functionalisation transformation that relies on type-based restrictions on
the use of expressions of functional type, such that we can completely
eliminate higher-order functions in all cases, without introducing any
branching. We prove the correctness of the transformation and discuss
its implementation in Futhark, a data-parallel functional language that
generates GPU code. The use of these restricted higher-order functions
has no impact on run-time performance, and we argue that we gain
many of the benefits of general higher-order functions, without in most
practical cases being hindered by the restrictions.
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1 Introduction

Higher-order functional languages enable programmers to write abstract, com-
positional, and modular programs [24], and are often considered well-suited for
parallel programming, due to the lack of shared state and side effects. The emer-
gence of commodity massively parallel processors, such as GPUs, has exacer-
bated the need for developing practical techniques for programming parallel
hardware. However, GPU programming is notoriously difficult, since GPUs offer
a significantly more restricted programming model than that of CPUs. For ex-
ample, GPUs do not readily allow for higher-order functions to be implemented,
mainly because GPUs have only limited support for function pointers.

If higher-order functions cannot be implemented directly, we may opt to
remove them by means of a program transformation that replaces them by a
simpler language mechanism. The canonical such transformation is defunctional-
isation, which was first described by Reynolds [31]. Reynolds’ defunctionalisation
abstracts each functional value by a set of records representing each particular
instance of the function, and the functional values in a program are abstracted
by the disjoint union of these sets. Each application in a program is then replaced



let twice (g:i32 ->i32) =

\x -> g (g x)

let main =

let f =

let a = 5

in twice (\y -> y+a)

in f 1 + f 2

(a) Source program

let g’ (env:{a:i32}) (y:i32) =

let a = env.a in y+a

let f’ (env:{g:{a:i32 }})

(x:i32) =

let g = env.g

in g’ g (g’ g x)

let main =

let f = let a = 5

in {g = {a = a}}

in f’ f 1 + f’ f 2

(b) Target program

Fig. 1: Example demonstrating the defunctionalisation transformation

by a call to an apply function, which performs a case match on each of the func-
tional forms and essentially serves as an interpreter for the functional values in
the original program. The most basic form will add a case to the apply function
for every function abstraction in the source program. This amount of branching
is very problematic for GPUs because of the issue of branch divergence. Since
threads in a GPU execute together in lockstep, in so called warps of usually 32
threads, a large amount of branching will cause many threads to be idle in the
branches where they are not executing instructions.

By restricting the use of functions in programs, we are able to statically
determine the form of the applied function at every application. Specifically, we
disallow conditionals and loops from returning functional values, and we disallow
arrays from containing functions. These restrictions allow defunctionalisation by
specializing each application to the particular form of function that may occur
at run time. The result is essentially equivalent to inlining completely the apply
function in a program produced by Reynolds defunctionalisation. Notably, the
transformation does not introduce any additional branching.

We have used the Futhark language [17,18,19,20,21] to demonstrate this idea.
Futhark is a data-parallel, purely functional array language with the main goal
of generating high-performance parallel code. Although the language itself is
hardware-agnostic, the main focus is on the implementation of an aggressively
optimizing compiler that generates efficient GPU code via OpenCL.

To illustrate the basic idea, we show a simple Futhark program in Figure 1a
and the resulting program after defunctionalisation in Figure 1b (simplified
slightly). The result is a first-order program that explicitly pass closure environ-
ments, in the form of records capturing the free variables, in place of first-class
functions in the source program.

The principal contributions of this paper are:

– A defunctionalisation transformation expressed on a simple data-parallel
functional array language, with type rules that restrict the use of higher-



order functions to allow for the defunctionalisation to remove effectively
higher-order functions in all cases, without introducing any branching.

– A correctness proof of the transformation: A well-typed program will trans-
late to another well-typed program and the translated program will evaluate
to a value, corresponding to the value of the original program, or fail with
an error if the original program fails.

– A description and evaluation of the transformation as implemented in the
compiler for a real high-performance functional language (Futhark).

In the following, we use the notation (Zi)i∈1..n to denote a sequence of objects
Z1, . . . ,Zn, where each Zi may be a syntactic object, a derivation of a judgment,
and so on. Further, we sometimes write D :: J to give the name D to the
derivation of the judgment J so that we can refer to it later.

2 Language

To be able to formally define and reason about the defunctionalisation trans-
formation, to be presented in Section 3, we define a simple functional language
on which the transformation will operate. Conceptually, the transformation goes
from a source language to a target language, but since the target language will be
a sublanguage of the source language, we shall generally treat them as one and
the following definitions will apply to both languages, unless stated otherwise.

The language is a λ-calculus extended with various features to resemble the
Futhark language, including records, arrays with in-place updates, a parallel
map, and a sequential loop construct. In the following, we define its abstract
syntax, operational semantics, and type system.

2.1 Syntax

The set of types of the source language is given by the following grammar. The
meta-variable ` ∈ Lab ranges over record labels.

τ ::= int | bool | τ1 → τ2 | {(`i : τi)i∈1..n} | [ ]τ

Record types are considered identical up to permutation of fields.
The abstract syntax of expressions of the source language is given by the

following grammar. The meta-variable x ∈ Var ranges over variables of the
source language. We assume an injective function Lab : Var → Lab that maps
variables to labels. Additionally, we let n ∈ Z.

e ::= x | n | true | false | e1 + e2 | e1 ≤ e2 | if e1 then e2 else e3

| λx : τ. e0 | e1 e2 | let x = e1 in e2 | {(`i = ei)
i∈1..n} | e0.`

| [(ei)i∈1..n] | e1[e2] | e0 with [e1]← e2 | length e0

|map (λx. e1) e2 | loop x = e1 for y in e2 do e3



Expressions are considered identical up to renaming of bound variables. Array
literals are required to be non-empty in order to simplify the rules and relations
in the following and in the meta theory.

The syntax of expressions of the target language is identical to that of the
source language except that it does not have λ-abstractions and application.
Similarly, the types of the target language does not include function types.1

We define a judgment, τ orderZero, given by the following rules, which assert
that a type τ does not contain any function type as a subterm:

int orderZero bool orderZero
(τi orderZero)

i∈1..n

{(`i : τi)i∈1..n} orderZero

τ orderZero
[ ]τ orderZero

2.2 Typing Rules

The typing rules for the language are mostly standard except for restrictions
on the use of functions in certain places. Specifically, a conditional may not
return a function, arrays are not allowed to contain functions, and a loop may
not produce a function. These restrictions are enforced by the added premise
of the judgment τ orderZero in the rules for conditionals, array literals, parallel
maps, and loops. Aside from these restrictions, the use of higher-order functions
and functions as first-class values is not restricted and, in particular, records are
allowed to contain functions of arbitrarily high order.

A typing context (or type environment) Γ is a finite sequence of variables
associated with their types:

Γ ::= · | Γ, x : τ

The empty context is denoted by ·, but is often omitted from the actual judg-
ments. The variables in a typing context are required to be distinct. This re-
quirement can always be satisfied by renaming bound variables as necessary.

The set of variables bound by a typing context is denoted by domΓ and
the type of a variable x bound in Γ is denoted by Γ (x) if it exists. We write
Γ, Γ ′ to denote the typing context consisting of the mappings in Γ followed by
the mappings in Γ ′. Note that since the variables in a context are distinct, the
ordering is insignificant. Additionally, we write Γ ⊆ Γ ′ if Γ ′(x) = Γ (x) for all
x ∈ domΓ . The typing rules for the language are given in Figure 2.

2.3 Semantics

For the sake of the meta theory presented later, we choose to define a big-step
operational semantics with an evaluation environment and function closures.

1 In the actual implementation, the target language does include application of first-
order functions, but in our theoretical work we just inline the functions for simplicity.



Γ ` e : τ

T-Var: (Γ (x) = τ)
Γ ` x : τ

T-Num:
Γ ` n : int

T-True:
Γ ` true : bool

T-False:
Γ ` false : bool

Γ ` e1 : int Γ ` e2 : int
T-Plus:

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int
T-Leq:

Γ ` e1 ≤ e2 : bool

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ τ orderZero
T-If:

Γ ` if e1 then e2 else e3 : τ

Γ, x : τ1 ` e0 : τ2
T-Lam:

Γ ` λx : τ1. e0 : τ1 → τ2

Γ ` e1 : τ2 → τ Γ ` e2 : τ2
T-App:

Γ ` e1 e2 : τ

Γ ` e1 : τ1

Γ, x : τ1 ` e2 : τ
T-Let:

Γ ` let x = e1 in e2 : τ

(Γ ` ei : τi)
i∈1..n

T-Rcd:
Γ ` {(`i = ei)

i∈1..n} : {(`i : τi)
i∈1..n}

Γ ` e0 : {(`i : τi)
i∈1..n}

T-Proj: (1 ≤ k ≤ n)
Γ ` e0.`k : τk

Γ ` e0 : [ ]τ
T-Length:

Γ ` length e0 : int

(Γ ` ei : τ)i∈1..n τ orderZero
T-Array:

Γ ` [e1, . . . , en] : [ ]τ

Γ ` e0 : [ ]τ Γ ` e1 : int
T-Index:

Γ ` e0[e1] : τ

Γ ` e0 : [ ]τ

Γ ` e1 : int Γ ` e2 : τ
T-Update:

Γ ` e0 with [e1]← e2 : [ ]τ

τ orderZero

Γ ` e2 : [ ]τ2 Γ, x : τ2 ` e1 : τ
T-Map:

Γ `map (λx. e1) e2 : [ ]τ

Γ ` e0 : τ Γ ` e1 : [ ]τ ′ Γ, x : τ, y : τ ′ ` e2 : τ τ orderZero
T-Loop:

Γ ` loop x = e0 for y in e1 do e2 : τ

Fig. 2: Typing rules

Evaluation environments Σ and values v are defined mutually inductively:

Σ ::= · | Σ, x 7→ v

v ::= n | true | false | clos(λx : τ. e0, Σ) | {(`i = vi)
i∈1..n} | [(vi)i∈1..n]

Evaluation environments Σ map variables to values and have the same properties
and notations as the typing context with regards to extension, variable lookup,
and distinctness of variables. A function closure, denoted clos(λx : τ. e0, Σ), is
a value that captures the environment in which a λ-abstraction was evaluated.
The values of the target language are the same, but without function closures.

Because the language involves array indexing and updating that may fail, we
introduce the special term err to denote an out-of-bounds error and we define
a result r to be either a value or err.



The big-step operational semantics for the language is given by the derivation
rules in Figure 3. In case any subexpression evaluates to err, the entire expression
should evaluate to err, so it is necessary to give derivation rules for propagating
these error results. Unfortunately, this error propagation involves creating many
extra derivation rules and duplicating many premises. We show the rules that
introduce err; however, we choose to omit the ones that propagate errors and
instead just note that for each of the non-axiom rules below, there are a number
of additional rules for propagating errors. For instance, for the rule E-App, there
are additional rules E-AppErr{1, 2, 0}, which propagate errors in the applied
expression, the argument, and the closure body, respectively. Techniques exist for
limiting this duplication [6,30], but, for simplicity, we have chosen a traditional
style of presentation.

The rule E-Loop refers to an auxiliary judgment form, defined in Figure 4,
which performs the iterations of the loop, given a starting value and a sequence
of values to iterate over. Like the main evaluation judgment, this one also has
rules for propagating err results, which are again omitted.

3 Defunctionalisation

We now define the defunctionalisation transformation which translates an ex-
pression in the source language to an equivalent expression in the target language
that does not contain any higher-order subterms or use of first-class functions.

Translation environments (or defunctionalisation environments) E and static
values sv are defined mutually inductively, as follows:

E ::= · | E, x 7→ sv

sv ::= Dyn τ | Lam x e0 E | Rcd {(`i 7→ sv i)
i∈1..n} | Arr sv0

Translation environments map variables to static values. We assume the same
properties as we did for typing contexts and evaluation environments, and we
use analogous notation. As the name suggests, a static value is essentially a
static approximation of the value that an expression will eventually evaluate to.
Static values resemble the role of types, which also approximate the values of
expressions, but static values posses more information than types. As a result
of the restrictions on the use of functions in the type system, the static value
Lam, which approximates functional values, will contain the actual function
parameter and body, along with a defunctionalisation environment containing
static values approximating the values in the closed-over environment. The two
other constructors Rcd and Arr complete the correspondence between types and
static values.

The defunctionalisation translation takes place in a defunctionalisation en-
vironment, as defined above, which mirrors the evaluation environment by ap-
proximating the values by static values, and it translates a given expression e
to a residual expression e′ and its corresponding static value sv . The residual
expression resembles the original expression, but λ-abstractions are translated



Σ ` e ↓ r

E-Var: (Σ(x) = v)
Σ ` x ↓ v E-Num:

Σ ` n ↓ n E-True:
Σ ` true ↓ true

Σ ` e1 ↓ n1 Σ ` e2 ↓ n2
E-Plus:

Σ ` e1 + e2 ↓ n1 + n2

E-False:
Σ ` false ↓ false

Σ ` e1 ↓ n1

Σ ` e2 ↓ n2
E-LeqT: (n1 ≤ n2)

Σ ` e1 ≤ e2 ↓ true

Σ ` e1 ↓ n1

Σ ` e2 ↓ n2
E-LeqF: (n1 > n2)

Σ ` e1 ≤ e2 ↓ false
Σ ` e1 ↓ true Σ ` e2 ↓ v

E-IfT:
Σ ` if e1 then e2 else e3 ↓ v

Σ ` e1 ↓ false Σ ` e3 ↓ v
E-IfF:

Σ ` if e1 then e2 else e3 ↓ v

E-Lam:
Σ ` λx : τ. e0 ↓ clos(λx : τ. e0, Σ)

Σ ` e1 ↓ clos(λx : τ. e0, Σ0)

Σ ` e2 ↓ v2 Σ0, x 7→ v2 ` e0 ↓ v
E-App:

Σ ` e1 e2 ↓ v

Σ ` e1 ↓ v1
Σ, x 7→ v1 ` e2 ↓ v

E-Let:
Σ ` let x = e1 in e2 ↓ v

(Σ ` ei ↓ vi)i∈1..n
E-Rcd:

Σ ` {(`i = ei)
i∈1..n} ↓ {(`i = vi)

i∈1..n}
Σ ` e0 ↓ {(`i = vi)

i∈1..n}
E-Proj: (1 ≤ k ≤ n)

Σ ` e0.`k ↓ vk

(Σ ` ei ↓ vi)i∈1..n
E-Array:

Σ ` [(ei)
i∈1..n] ↓ [(vi)

i∈1..n]

Σ ` e0 ↓ [(vi)
i∈1..n]

Σ ` e1 ↓ k
E-Index: (1 ≤ k ≤ n)

Σ ` e0[e1] ↓ vk
Σ ` e0 ↓ [(vi)

i∈1..n] Σ ` e1 ↓ k
E-IndexErr: (k < 1 ∨ k > n)

Σ ` e0[e1] ↓ err

Σ ` e0 ↓ [(vi)
i∈1..n] Σ ` e1 ↓ k Σ ` e2 ↓ v′k

E-Update: (1 ≤ k ≤ n)
Σ ` e0 with [e1]← e2 ↓ [(vi)

i∈1..k−1, v′k, (vi)
i∈k+1..n]

Σ ` e0 ↓ [(vi)
i∈1..n] Σ ` e1 ↓ k

E-UpdateErr: (k < 1 ∨ k > n)
Σ ` e0 with [e1]← e2 ↓ err

Σ ` e0 ↓ [(vi)
i∈1..n]

E-Length:
Σ ` length e0 ↓ n

Σ ` e2 ↓ [(vi)
i∈1..n]

(Σ, x 7→ vi ` e1 ↓ v′i)
i∈1..n

E-Map:
Σ `map (λx. e1) e2 ↓ [(v′i)

i∈1..n]

Σ ` e0 ↓ v0 Σ ` e1 ↓ [(vi)
i∈1..n] Σ;x = v0; y = (vi)

i∈1..n ` e2 ↓ v
E-Loop:

Σ ` loop x = e0 for y in e1 do e2 ↓ v

Fig. 3: Big-step operational semantics

into record expressions that capture the values in the environment at the time
of evaluation. Applications are translated into let-bindings that bind the record
expression, the closed-over variables, and the function parameter.



Σ;x = v0; y = (vi)
i∈1..n ` e ↓ r

EL-Nil:
Σ;x = v0; y = · ` e ↓ v0

Σ, x 7→ v0, y 7→ v1 ` e ↓ v′0 Σ;x = v′0; y = (vi)
i∈2..n ` e ↓ v

EL-Cons:
Σ;x = v0; y = (vi)

i∈1..n ` e ↓ v

Fig. 4: Auxiliary judgment for the semantics of loops

As with record types, we consider Rcd static values to be identical up to
reordering of the label-entries. Additionally, we consider Lam static values to be
identical up to renaming of the parameter variable, as for λ-abstractions.

The transformation is defined by the derivation rules in Figure 5 and Figure 6.

E ` e 〈e′, sv〉

D-Var: (E(x) = sv)
E ` x 〈x, sv〉 D-Num:

E ` n 〈n,Dyn int〉

D-True:
E ` true 〈true,Dyn bool〉 (equivalent rule D-False)

E ` e1  〈e′1,Dyn int〉 E ` e2  〈e′2,Dyn int〉
D-Plus:

E ` e1 + e2  〈e′1 + e′2,Dyn int〉
(rule D-Leq)

E ` e1  〈e′1,Dyn bool〉 E ` e2  〈e′2, sv〉 E ` e3  〈e′3, sv〉
D-If:

E ` if e1 then e2 else e3  〈if e′1 then e′2 else e′3, sv〉

D-Lam:
E ` λx : τ. e0  

〈
{(Lab(y) = y)y∈domE},Lam x e0 E

〉
E ` e1  〈e′1,Lam x e0 E0〉

E ` e2  〈e′2, sv2〉 E0, x 7→ sv2 ` e0  〈e′0, sv〉
D-App:

E ` e1 e2  〈e′, sv〉
where e′ = let env = e′1 in (let y = env .Lab(y) in)y∈domE0

let x = e′2 in e′0

E ` e1  〈e′1, sv1〉 E, x 7→ sv1 ` e2  〈e′2, sv〉
D-Let:

E ` let x = e1 in e2  〈let x = e′1 in e′2, sv〉

Fig. 5: Derivation rules for the defunctionalisation transformation

In the implementation, the record in the residual expression of rule D-Lam
captures only the free variables in the λ-abstraction. Likewise, the defunction-
alisation environment embedded in the static value is restricted to the free vari-



E ` e 〈e′, sv〉

(E ` ei  〈e′i, sv i〉)i∈1..n
D-Rcd:

E ` {(`i = ei)
i∈1..n} 

〈
{(`i = e′i)

i∈1..n},Rcd {(`i 7→ sv i)
i∈1..n}

〉
E ` e0  

〈
e′0,Rcd {(`i 7→ sv i)

i∈1..n}
〉

D-Proj: (1 ≤ k ≤ n)
E ` e0.`k  〈e′0.`k, svk〉

(E ` ei  〈e′i, sv〉)
i∈1..n

D-Array:
E ` [e1, . . . , en] 〈[e′1, . . . , e′n],Arr sv〉

E ` e1  〈e′1,Arr sv〉 E ` e2  〈e′2,Dyn int〉
D-Index:

E ` e1[e2] 〈e′1[e′2], sv〉

E ` e0  〈e′0,Arr sv〉 E ` e1  〈e′1,Dyn int〉 E ` e2  〈e′2, sv〉
D-Update:

E ` e0 with [e1]← e2  〈e′0 with [e′1]← e′2,Arr sv〉

E ` e0  〈e′0,Arr sv〉
D-Length:

E ` length e0  〈length e′0,Dyn int〉

E ` e2  〈e′2,Arr sv2〉 E, x 7→ sv2 ` e1  〈e′1, sv1〉
D-Map:

E `map (λx. e1) e2  〈map (λx. e′1) e′2,Arr sv1〉

E ` e1  〈e′1, sv〉 E ` e2  〈e′2,Arr sv2〉
E, x 7→ sv , y 7→ sv2 ` e3  〈e′3, sv〉

D-Loop:
E ` loop x = e1 for y in e2 do e3

 〈loop x = e′1 for y in e′2 do e′3, sv〉

Fig. 6: Derivation rules for the defunctionalisation transformation (cont.)

ables. This refinement is not hard to formalise, but it does not add anything
interesting to the development, so we have omitted it for simplicity.

Notice how the rules include aspects of both evaluation and type checking,
in analogy to how static values are somewhere in-between values and types. For
instance, the rules ensure that variables are in scope, and that a conditional has
a Dyn boolean condition and the branches have the same static value. Interest-
ingly, this constraint on the static values of branches allows for a conditional to
return functions in its branches, as long as the functions are α-equivalent. The
same is true for arrays and loops.

This transformation translates any order-zero expression into an equivalent
expression that does not contain any higher-order functions. Any first-order ex-
pression can be translated by converting the types of its parameters (which are
necessarily order zero) to static values, by mapping record types to Rcd static
values and base types to Dyn static values, and including these as bindings for
the parameter variables in an initial translation environment.



By a relatively simple extension to the system, we can support any number
of top-level function definitions that take parameters of arbitrary type and can
have any return type, as long as the designated main function is first-order.

4 Meta Theory

In this section, we show type soundness and argue for the correctness of the
defunctionalisation transformation presented in Section 3. We show that the
transformation of a well-typed expression always terminates and yields another
well-typed expression. Finally, we show that the meaning of a defunctionalised
expression is equivalent to the meaning of the original expression.

4.1 Type Soundness and Normalisation

We first show type soundness. Since we are using a big-step semantics, the situa-
tion is a bit different from the usual approach of showing progress and preserva-
tion for a small-step semantics. One of the usual advantages of using a small-step
semantics is that it allows distinguishing between diverging and stuck terms,
whereas for a big-step semantics, neither a diverging term nor a stuck term is
related to any value. As we shall see, however, for the big-step semantics that we
have presented, any well-typed expression will evaluate to a result that is either
err or a value that is, semantically, of the same type. Thus, we also establish
that the language is strongly normalizing, which comes as no surprise given the
lack of recursion and bounded number of iterations of loops.

To this end, we first define a relation between values and types, given by
derivation rules in Figure 7, and extend it to relate evaluation environments and
typing contexts.

� v : τ

� n : int � true : bool � false : bool

∀v1. � v1 : τ1 =⇒ ∃r. Σ, x 7→ v1 ` e0 ↓ r ∧ (r = err ∨ (r = v2 ∧ � v2 : τ2))

� clos(λx : τ1. e0, Σ) : τ1 → τ2

(� vi : τi)
i∈1..n

� {(`i = vi)
i∈1..n} : {(`i : τi)

i∈1..n}
(� vi : τ)i∈1..n

� [(vi)
i∈1..n] : [ ]τ

� Σ : Γ

� · : ·
� Σ : Γ � v : τ
� (Σ, x 7→ v) : (Γ, x : τ)

Fig. 7: Relation between values and types, and evaluation environments and
typing contexts, respectively



We then state and prove type soundness as follows. We do not go into the
details of the proof and how the relation between values and types is used.
The cases for T-Lam and T-App are the most interesting in this regard, but
we omit the details in favor of other results which more directly pertain to
defunctionalisation. A similar relation and its role in the proof of termination
and preservation of typing for the defunctionalisation transformation is described
in more detail in Section 4.2.

Lemma 1 (Type Soundness). If Γ ` e : τ (by T ) and � Σ : Γ , for some
Σ, then Σ ` e ↓ r, for some r, and either r = err or r = v, for some v, and
� v : τ .

Proof. By induction on the typing derivation T . In the case for T-Lam, we prove
the implication in the premise of the rule relating closure values and function
types. In the case for T-App, we use this implication to obtain the needed
derivations for the body of the closure. In the case for T-Loop, in the subcase
where the first two subexpressions evaluate to values, we proceed by an inner
induction on the structure of the corresponding sequence of values for the loop
iterations. ut

4.2 Translation Termination and Preservation of Typing

In this section, we show that the translation of a well-typed expression always
terminates and that the translated expression is also well-typed, with a typing
context and type that can be obtained from the defunctionalisation environment
and the static value, respectively.

We first define a mapping from static values to types, which shows how the
type of a residual expression can be obtained from its static value:

JDyn τ Ktp = τ

JLam x e0 E Ktp = {(Lab(y) : J svy Ktp)(y 7→svy)∈E}
q
Rcd {(`i 7→ sv i)

i∈1..n}
y
tp

= {(`i : J sv i Ktp)i∈1..n}

JArr sv Ktp = [ ](J sv Ktp)

This mapping is extended to map defunctionalisation environments to typing
contexts, by mapping each individual static value in an environment.

J · Ktp = ·
JE, x 7→ sv Ktp = JE Ktp , x : J sv Ktp

In order to be able to show termination and preservation of typing for de-
functionalisation, we first define a relation, � sv : τ , between static values and
types, similar to the previous relation between values and types, and further
extend it to relate defunctionalisation environments and typing contexts. This
relation is given by the rules in Figure 8.



� sv : τ

� Dyn int : int � Dyn bool : bool

∀sv1. � sv1 : τ1 =⇒ ∃e′0, sv2. E0, x 7→ sv1 ` e0  
〈
e′0, sv2

〉
∧ � sv2 : τ2 ∧ JE0, x 7→ sv1 Ktp ` e

′
0 : J sv2 Ktp

� Lam x e0 E0 : τ1 → τ2

(� sv i : τi)
i∈1..n

� Rcd {(`i 7→ sv i)
i∈1..n} : {(`i : τi)

i∈1..n}
� sv : τ τ orderZero

� Arr sv : [ ]τ

� E : Γ

� · : ·
� E : Γ � sv : τ
� (E, x 7→ sv) : (Γ, x : τ)

Fig. 8: Relation between static values and types, and defunctionalisation envi-
ronments and typing contexts, respectively

By assuming this relation between some defunctionalisation environment E
and a typing context Γ for a given typing derivation, we can show that a well-
typed expression will translate to some expression and additionally produce a
static value that is related to the type of the original expression according to
the above relation. Additionally, the translated expression is well-typed in the
typing context obtained from E with a type determined by the static value.
This strengthens the induction hypothesis to allow the case for application to go
through, which would otherwise not be possible. This approach is quite similar
to the previous proof of type soundness and normalisation of evaluation.

We first prove an auxiliary lemma about the above relation between static
values and types, which states that for types of order zero, the related static
value is uniquely determined. This property is crucial for the ability of defunc-
tionalisation to determine uniquely the function at every application site, and
it is used in the proof of Theorem 1 in the cases for conditionals, array literals,
array updates, and loops.

Lemma 2. If � sv : τ , � sv ′ : τ , and τ orderZero, then sv = sv ′.

Proof. By induction on the derivation of � sv : τ . ut

The following lemma states that if a static value is related to a type of order
zero, then the static values maps to the same type. This property is used to
establish that the types of order zero terms are unchanged by defunctionalisation.
It is also used in the cases for conditionals, array literals, loops, and maps in the
proof of Theorem 1.

Lemma 3. For any sv, if � sv : τ and τ orderZero, then J sv Ktp = τ .

Proof. By induction on the structure of sv . ut

Finally, we can state and prove termination and preservation of typing for
the defunctionalisation translation as follows:



Theorem 1. If Γ ` e : τ (by T ) and � E : Γ , for some E, then E ` e  
〈e′, sv〉, � sv : τ , and JE Ktp ` e′ : J sv Ktp, for some e′ and sv.

Proof. By induction on the typing derivation T . Most cases are straightforward
applications of the induction hypothesis to the subderivations, often reasoning
by inversion on the obtained relations between static values and types, and ex-
tending the assumed relation � E : Γ to allow for further applications of the in-
duction hypothesis. Then the required derivations are subsequently constructed
directly. For details, please consult [23]. ut

4.3 Preservation of Meaning

In this section, we show that the defunctionalisation transformation preserves
the meaning of expressions in the following sense: If an expression e evaluates to
a value v in an environment Σ, then the translated expression e′ will evaluate to
a corresponding value v′ in a corresponding environment Σ′, and if e evaluates
to err, then e′ will evaluate to err in the context Σ′ as well (the notion of
correspondence will be made precise shortly).

We first define a simple relation between source language values and static
values, given in Figure 9, and extend it to relate evaluation environments and de-
functionalisation environments in the usual way. Note that this relation actually
defines a function from values to static values.

� v : sv

� n : Dyn int � true : Dyn bool � false : Dyn bool

� Σ : E
� clos(λx : τ. e0, Σ) : Lam x e0 E

(� vi : sv i)
i∈1..n

� {(`i = vi)
i∈1..n} : Rcd {(`i 7→ sv i)

i∈1..n}
(� vi : sv)i∈1..n

� [(vi)
i∈1..n] : Arr sv

Fig. 9: Relation between values and static values

Next, we define a mapping from source language values to target language
values, which simply converts each function closure to a corresponding record
expression that contains the converted values from the closure environment:

J v Kval = v , for v ∈ {n, true, false}
J clos(λx : τ. e0, Σ) Kval = {(Lab(y) = J vy Kval)

(y 7→vy)∈Σ}
q
{(`i = vi)

i∈1..n}
y
val

= {(`i = J vi Kval)
i∈1..n}

q
[(vi)

i∈1..n]
y
val

= [(J vi Kval)
i∈1..n]



We extend this mapping homomorphically to evaluation environments. The case
for arrays is actually moot, since arrays will never contain function closures.

The following lemma states that if a value is related to a type of order zero,
according to the previously defined relation between values and types used in
the proof of type soundness, then the value maps to itself, that is, values that
do not contain function closures are unaffected by defunctionalisation:

Lemma 4. If � v : τ and τ orderZero, then J v Kval = v.

Proof. By induction on the derivation of � v : τ . ut

We now prove the following theorem, which states that the defunctionali-
sation transformation preserves the meaning of an expression that is known to
evaluate to some result, where the value of the defunctionalised expression and
the values in the environment are translated according to the translation from
source language values to target language values given above.

Theorem 2 (Semantics Preservation). If Σ ` e ↓ r (by E), � Σ : E (by
R), and E ` e  〈e′, sv〉 (by D), then if r = err, then also JΣ Kval ` e′ ↓ err
and if r = v, for some value v, then � v : sv and JΣ Kval ` e′ ↓ J v Kval.

Proof. By structural induction on the big-step evaluation derivation E . For de-
tails, please consult [23]. ut

4.4 Correctness of Defunctionalisation

To summarize the previous properties and results relating to the correctness of
the defunctionalisation transformation, we state the following corollary which
follows by type soundness (Lemma 1), normalisation and preservation of typing
for defunctionalisation (Theorem 1), and semantics preservation of defunction-
alisation (Theorem 2), together with Lemma 3 and Lemma 4.

Corollary 1 (Correctness). If ` e : τ and τ orderZero, then ` e ↓ r, for some
r, ` e 〈e′, sv〉, for some e′ and sv, and ` e′ : τ and ` e′ ↓ r as well.

5 Implementation

The defunctionalisation transformation that was presented in Section 3 has been
implemented in the Futhark compiler, which is developed in the open on GitHub
and publicly available at https://github.com/diku-dk/futhark.

In this section, we discuss how our implementation diverges from the theo-
retical description. As Futhark is a real language with a fairly large number of
syntactical constructs, as well as features such as uniqueness types for support-
ing in-place updates and size-dependent types for reasoning about the sizes of
arrays, it would not be feasible to do a formal treatment of the entire language.

Futhark supports a small number of parallel higher-order functions, such as
map, reduce, scan, and filter, which are specially recognized by the compiler,

https://github.com/diku-dk/futhark


and exploited to perform optimisations and generate parallel code. User-defined
parallel higher-order functions are ultimately defined in terms of these. As a
result, the program produced by the defunctionaliser is not exclusively first-
order, but may contain fully saturated applications of these built-in functions.

5.1 Polymorphism, Function Types, and Monomorphisation

Futhark supports parametric let-polymorphism. Defunctionalisation, however,
works only on monomorphic programs and therefore, programs are monomor-
phized before being passed to the defunctionaliser.

Due to our restrictions on function types, it is necessary to distinguish be-
tween type variables which may be instantiated with any type, and type vari-
ables which may only take on types of order zero. Without such distinction, one
could write an invalid program that we would not be able to defunctionalise, for
example by instantiating the type a with a function type in the following:

let ite ’a (b: bool) (x: a) (y: a) : a =

if b then x else y

To prevent this situation from happening, we have introduced the notion of lifted
type variables, written ’^a, which are unrestricted in the types that they may
be instantiated to, while the regular type variables may only take on types of
order zero. Consequently, a lifted type variable must be considered to be of order
greater than zero and is thus restricted in the same way as function types.

The Futhark equality and inequality operators == and != are overloaded op-
erators, which also work on structural types, such as arrays and tuples. However,
Futhark does not support type classes [29] or equality types [11]. Allowing the
equality and inequality operators to work on values of abstract types (i.e., on all
non-lifted types) could potentially violate abstraction properties, which is the
reason for the special treatment of equality types and equality type variables in
the Standard ML programming language.

5.2 Array Shape Parameters

Futhark employs a system of runtime-checked size-dependent types, where the
programmer may give shape declarations in function definitions to express shape
invariants about parameter and result arrays. Shape parameters (listed before
ordinary parameters and enclosed in brackets) are not explicitly passed on ap-
plication. Instead, they are implicitly inferred from the arguments of the value
parameters. Defunctionalisation could potentially destroy the shape invariants.
For example, consider partially applying a function such as the following:

let f [n] (xs: [n]i32) (ys: [n]i32) = ...

In the implementation, we preserve the connection between the shapes of the
two array parameters by capturing the shape parameter n along with the ar-
ray parameter xs in the record for the closure environment. In the case of the
function f, the defunctionalised program will look something like the following:



let f^ {n: i32 , xs: []i32} (ys: [n]i32) = ...

let f [n] (xs: [n]i32) = {n=n, xs=xs}

The Futhark compiler will then insert a dynamic check to verify that the size of
array ys is equal to the value of argument n.

Of course, built-in operations that truly rely on these invariants, such as zip,
will perform this shape check regardless, but by maintaining these invariants in
general, we prevent code from silently breaching the contract that was specified
by the programmer through the shape annotations in the types.

Having extended Futhark with higher-order functions, it is useful to be able to
specify shape invariants on expressions of function type in general. This feature
can be implemented by eta-expanding the function expression and inserting type
ascriptions with shape annotations on the order-zero parameters and bodies. For
instance, the type ascription

e : ([n]i32 -> [m]i32) -> [m]i32

would be translated into the expression

\x -> (e (\(y:[n]i32) -> x y : [m]i32)) : [m]i32

This feature has not yet been implemented in Futhark.

5.3 Optimisations

When the defunctionalisation algorithm processes an application, the D-App
rule will replicate the lambda body (e0) at the point of application. This implicit
copying is equivalent to fully inlining all functions, which will produce very large
programs if the same function is called in many locations. In our implementation,
we instead perform lambda lifting [25] to move the definition of the lambda to a
top-level function, parameterized by an argument representing its lexical closure,
and simply insert a call to that function.

However, this lifting produces the opposite problem: we may now produce a
very large number of trivial functions. In particular, when lifting curried func-
tions that accept many parameters, we will create one function for each partial
application, corresponding to each parameter. To limit the copying and lifting,
our implementation extends the notion of static values with a dynamic function,
which is simply a first-order functional analogue to dynamic values. We then add
a translation rule similar to D-App that handles the case where the function is
a dynamic function rather than a Lam.

Finally, our implementation inlines lambdas with particularly simple bodies;
in particular those that contain just a single primitive operation or a record
literal. The latter case corresponds to functions produced for partial applications.

6 Empirical Evaluation

The defunctionalisation technique presented in this paper can be empirically
evaluated by two metrics. First, is the code produced by defunctionalisation effi-
cient? Second, are higher-order functions with our type restrictions useful? The



former question is the easier to answer, as we can simply rewrite a set of bench-
mark programs to make use of higher-order functions, and measure whether
the performance of the generated code changes. We have done this by using
the existing Futhark benchmark suite, which contains more than thirty Futhark
programs translated from a range of other suites, including Accelerate [4], Ro-
dinia [7], Parboil [32], and FinPar [1]. These implementations all make heavy
use of operations such as map, reduce, scan, filter, which used to be language
constructs, but are now higher-order functions that wrap compiler intrinsics. Fur-
ther, most benchmarks have been rewritten to make use of higher-order utility
functions (such as flip, curry, uncurry, and function composition and appli-
cation) where appropriate. As expected, this change had no impact on run-time
performance, although compilation times did increase by up to a factor of two.

The more interesting question is whether the restrictions we put on higher-
order functions are too onerous in practice. While some uses of higher-order
functions are impossible, many “functional design patterns” are unaffected by the
restrictions. Such examples include the use of higher-order functions for defining
a Futhark serialisation library [27,13] and for introducing the notion of functional
images [9], as we shall see in the following section. Higher-order functions also
make it possible to capture certain reusable parallel design patterns, for instance,
for flattening some cases of nested irregular parallelism [15].

6.1 Functional Images

Church Encoding can be used to represent objects such as integers via lambda
terms. While modern functional programmers tend to prefer built-in numeric
types for efficiency reasons, other representations of data as functions have re-
mained popular. One of these is functional images, as implemented in the Haskell
library Pan [9]. Here, an image is represented as a function from a point on the
plane to some value. In higher-order Futhark, we can define this as

type img ’a = point -> a

type cimage = img color

for appropriate definitions of point and color. Transformations on images are
then defined simply as function composition.

Interestingly, none of the combinators and transformations defined in Pan re-
quire the aggregation of images in lists, or returning them from a branch. Hence,
we were able to translate the entirety of the Pan library to Futhark. The reason
is likely that Pan itself was designed for staged compilation, where Haskell is
merely used as a meta-language for generating code for some high-performance
object language [10]. This approach requires restrictions on the use of functions
that are essentially identical to the ones we introduced for Futhark. In Futhark,
we can directly generate high-performance parallel code, and modern GPUs are
easily powerful enough to render most functional images (and animations) at
a high frame rate. Essentially, once the compiler finishes its optimisations, we
are left with a trivial two-dimensional map that computes the color of each pixel



Fig. 10: Images rendered by the Futhark implementation of functional images.
The annulus defined by the left-most image is used to overlay grey scale and
colorized Mandelbrot fractals.

completely independently. Example images are shown on Figure 10. The Man-
delbrot fractal, the implementation of which is translated from [26], in particular
is expensive to compute at high resolutions.

7 Allowing Conditionals of Function Type

Given that the main novelty enabling efficient defunctionalisation is the restric-
tions in the type system, it is interesting to consider how these restrictions could
be loosened to allow more programs to be typed and transformed, and what
consequences this would have for the efficiency of the transformed programs.

In the following, we consider lifting the restriction on the type of conditionals.
This change introduces a binary choice for the static value of a conditional and
this choice may depend on dynamic information. The produced static value must
capture this choice. Thus, we may extend the definition of static values as follows:

sv ::= · · · | Or sv1 sv2

It is important not to introduce more branching than necessary, so the static
values of the branches of a conditional should be appropriately combined to
isolate the dynamic choice at much as possible. In particular, if a conditional
returns a record, the Or static value should only be introduced for those record
fields that produce Lam static values.

The residual expression for a functional value occurring in a branch must
be extended to include some kind of token to indicate which branch is taken
at run time. Unfortunately, it is fairly complicated to devise a translation that
preserves typeability in the current type system. The residual expression of a
function occurring in a nested conditional would need to include as many tokens
as the maximum depth of nesting in the outermost conditional. Additionally,
the record capturing the free variables in a function would need to include the
union of all the free variables in each λ-abstraction that can be returned from
that conditional. Hence, we would have to include “dummy” record fields for



those variables that are not in scope in a given function, and “dummy” tokens
for functions that are not deeply nested in branches.

What is needed to remedy this situation, is the addition of (binary) sum
types to the language:

τ ::= · · · | τ1 + τ2

If we add binary sums, along with expression forms for injections and case-
matching, the transformation would just need to keep track of which branches
were taken to reach a particular function-type result and then wrap the usual
residual expression in appropriate injections. An application of an expression
with an Or static value would then perform pattern matching until it reaches
a Lam static value and then insert let-bindings to put the closed-over variables
into scope, for that particular function.

8 Related Work

Support for higher-order functions is not widespread in parallel programming
languages. For example, they are not supported in the pioneering work on
NESL [3], which was targeted at a vector execution model with limitations simi-
lar to modern GPUs. Data Parallel Haskell (DPH) [5] does support higher-order
functions via closure conversion, but targets traditional multicore CPUs where
this is a viable technique. The GPU language Harlan [22] is notable for its pow-
erful feature set, and it does support higher-order functions via Reynolds-style
defunctionalisation. The authors of Harlan note that this could cause perfor-
mance problems, but that it has not done so yet. This is likely because most of
the Harlan benchmark programs do not make much use of closures on the GPU.

A general body of related work includes mechanisms for removing abstrac-
tions at compile time including the techniques, used for instance by Accelerate
[4] and Obsidian [8], for embedded domain specific languages (EDSLs). These
languages use a staged compilation approach where Haskell is used as a meta-
language to generate first-order imperative target programs. While the target
programs are themselves first-order, meta-programs may use the full power of
Haskell, including higher-order functions. As our approach has limitations, so
does the EDSL approach; in particular, care has to be taken that source language
functions do not end up in target arrays. Other approaches at removing abstrac-
tions at compile time include the use of quoted domain specific languages [28],
techniques for multi-stage programming, such as [33], and the notion of static
interpretation of modules [12], which is also applied in the context of Futhark
[2,14] for eliminating even higher-order module language constructs entirely at
compile time (before monomorphisation).

Another body of related work includes the seminal work by Tait [34] and
Girard [16] on establishing the basic proof technique on using logical relations
for expressing normalisation and termination properties for the simply-typed
lambda calculus and System F, which has been the inspiring work for establishing
the property of termination for our defunctionalisation technique.



9 Conclusion and Future Work

We have shown a useful design for implementing higher-order functions in high-
performance functional languages, by using a defunctionalisation transformation
that exploits type-based restrictions on functions to avoid introducing branches
in the resulting first-order program. We have proven this transformation correct.
Further, we have discussed the extensions and optimisations we found necessary
for applying the transformation in a real compiler, and demonstrated that the
type restrictions are not a great hindrance in practice.
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