Optimising Typed Programs – Exercises

Note: There is an error in the notes; you need to replace the requirement $\vec{\alpha} = \operatorname{ftv}(\tau) \setminus \operatorname{ftv}(\Gamma)$ in rules (6) and (9) with the requirement $\operatorname{ftv}(\vec{\alpha}) \cap \operatorname{ftv}(\Gamma) = \emptyset$. Otherwise, Lemma 2.1 does not hold.

Exercise 1 Give an example showing that simultaneous substitution is different from compositional substitution, i.e., show that there exist types τ_1 , τ_2 and τ , such that

$$\tau\{\alpha_1 \mapsto \tau_1, \alpha_2 \mapsto \tau_2\} \neq (\tau\{\alpha_1 \mapsto \tau_1\})\{\alpha_2 \mapsto \tau_2\}$$

Exercise 2 Prove Lemma 2.1. \Box

Exercise 3	Show that	$\rightarrow_{\text{proj}}$ is typ	e preserving.]
------------	-----------	------------------------------------	---------------	--	---

Exercise 4 Show that \longrightarrow_{dce} is type preserving.

Exercise 5 Assume that the typed lambda language is extended to support integers. What is the result of applying $\longrightarrow_{\text{spec2}}$ and $\longrightarrow_{\text{inl1}}$ to the expression

letrec adder: $(int \rightarrow int) \rightarrow (int \rightarrow int) g = \lambda n$: int. if n = 0 then 0else g n + adder g (n - 1)in $adder (\lambda x : int. x + 1) 10$

Exercise 6 What is the result of applying value propagation to the expression

 $\begin{array}{l} \lambda y: \texttt{bool.} \ \lambda x: \texttt{bool.} \\ \texttt{if} \ x \ \texttt{then} \\ \texttt{if} \ x \ \texttt{then} \ y \ \texttt{else true} \\ \texttt{else} \ y \end{array}$