
Optimising Typed Programs

Martin Elsman∗

University of Copenhagen

January 6, 1998

Abstract

In this note we present a set of optimisations for an intermediate lan-

guage of a Standard ML compiler. Most of the optimisations presented

are off-the-shelf optimisations, including dead code elimination, constant

folding, recursive function specialization, in-lining and value propagation.

All optimisations are presented in a typed setting.

1 Introduction

Typed intermediate languages of optimising compilers are becoming increasingly
recognised, mainly for two reasons. First, several type based optimisations
and analyses have been suggested that cannot be done in an untyped setting.
Such analyses and optimisations include various sorts of boxing analyses [Ler92,
HJ94], intensional polymorphism [HM95] and region inference [TT94, BTV96].
Second, types can be used to provide certain safety guarantees for a program. In
particular, by propagating types all the way to the target language, it becomes
possible to type check programs just before execution. This has the advantage
that typed executables may be shipped across the internet and if the executable
type checks, it can be trusted.

In this note we describe optimisations for an intermediate language in the
ML Kit with Regions compiler [TBE+97] (from hereon just the Kit) which is
an optimising compiler for Standard ML [MTHM97]. We show that many of
the important optimisations that are possible in an untyped setting, are also
possible in a typed setting.

Optimisations performed in an intermediate language of an optimising com-
piler must satisfy at least two conditions. First, the optimisations must preserve
types and semantics. Second, the optimisations may not lead to slower programs
or programs that take up more space. In particular, it is important that all opti-
misations are “safe for space complexity.” That is, no optimisation may destroy
space complexity properties of the program. Since space consumptions depend

∗Address: Department of Computer Science (DIKU), University of Copenhagen, Univer-
sitetsparken 1, DK–2100 Copenhagen, Denmark; email: mael@diku.dk.

1

on the underlying implementation technique, different restrictions apply for dif-
ferent underlying implementation techniques. In compilers building on garbage
collection techniques one must be careful that no expression that may capture
data in a closure is in-lined under a lambda-binding. For instance in-lining a
selection from a large tuple in the body of a function may cause dead data to
be captured in the closure [App92]. This restriction must also be enforced in
a compiler building on region inference. Moreover, region inference and region
representation analyses lays further restrictions on what optimisations may be
performed. Yet, still quite a large set of optimisations are possible. We will not
in this note address this issue further.

The optimisations that we present are off-the-shelf optimisations, including
dead code elimination, constant folding, recursive function specialization, in-
lining and value propagation. Some optimisations trigger other optimisations
and vice versa. In the Kit these optimisations are naturally grouped together
in what is called a contract phase. By keeping track of usage counts the con-
tract phase may be implemented as a quasi-one-pass algorithm [AJ97]. In the
following we focus on a small example language and present the optimisations
for this language.

2 The Language and its Semantics

The language that we consider is a typed lambda language including a let-
construct for polymorphism and a letrec-construct for expressing recursion. Fur-
ther, the language includes constructs for records and sums.

We assume TyVar be a denumerably infinite set of type variables, ranged
over by α. Types and type schemes conform to the following syntax.

τ ::= α | τ1 → τ2 | τ1 × τ2 | bool

σ ::= ∀~α.τ

Type schemes are considered equal up-to renaming of bound type variables.
A substitution S is a finite map from type variables to types. When A is any
object and S is a substitution we write S(A) to mean simultaneous capture free
substitution of S on A.

For any type scheme σ = ∀α1 · · ·αn.τ and type τ ′, we say that τ ′ is an
instance of σ (via S), written σ ≥ τ ′, if there exists a substitution S = {α1 7→
τ1, . . . , αn 7→ τn} such that S(τ) = τ ′. The instance list of S, written il (S),
is the list [τ1, . . . , τn] and we shall refer to lists of the above form as instance
lists and use il to range over them. When ~α = α1 · · ·αn, n ≥ 0 is a list of type
variables and il = [τ1, · · · , τn] is an instance list we write {il/~α} to mean the
substitution {α1 7→ τ1, · · · , αn 7→ τn}. Further, when A is any object we denote
by ftv(A) the set of type variables occurring free in A. We consider a type τ to
be the type scheme ∀().τ , hence the set of types is a subset of the set of type
schemes.

2

2.1 Typed Expressions

In the following we use f , x and y to range over a denumerably infinite set Lvar
of lambda variables. The grammar for typed expressions is given below.

e ::= λx : τ.e | e1 e2 | (e1, e2) | πi e | xil

| let x : σ = e1 in e2 | true | false

| if e then e1 else e2

| letrec f : σ x = e1 in e2

We sometimes abbreviate xil with x, when il = [].
A type environment, Γ, is a mapping from lambda variables to type schemes.

The static semantics for the language relates types to expressions, under some
assumptions, and describes what expressions are well-typed. The static seman-
tics is presented as a set of inference rules allowing inferences among sentences
of the form Γ ⊢ e : τ , where Γ is a type environment, e an expression and τ a
type.

Expressions Γ ⊢ e : τ

Γ + {x 7→ τ} ⊢ e : τ ′

Γ ⊢ λx : τ.e : τ → τ ′
(1)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(2)

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

(3)
i ∈ {1, 2} Γ ⊢ e : τ1 × τ2

Γ ⊢ πi e : τi

(4)

Γ(x) ≥ τ via S

Γ ⊢ xil(S) : τ
(5)

Γ ⊢ e1 : τ ~α = ftv(τ) \ ftv(Γ)
Γ + {x 7→ ∀~α.τ} ⊢ e2 : τ ′

Γ ⊢ let x : ∀~α.τ = e1 in e2 : τ ′
(6)

Γ ⊢ e : bool
Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ
(7) Γ ⊢ false : bool

(8)

τ = τ ′ → τ ′′ ~α = ftv(τ) \ ftv(Γ)
Γ + {f 7→ τ} ⊢ λx : τ ′.e1 : τ
Γ + {f 7→ ∀~α.τ} ⊢ e2 : τ ′′′

Γ ⊢ letrec f : ∀~α.τ x = e1 in e2 : τ ′′′
(9) Γ ⊢ true : bool

(10)

When e is any expression we write flv(e) to mean the set of free lambda vari-
ables in e. Further, when e and e′ are expressions and x is a lambda variable, we

3

write e{e′/x} to mean capture free substitution of e′ for x in e. Expressions are
considered equal up-to renaming of bound lambda variables and type variables.

The restriction of an environment Γ to a set of lambda variables A ⊆
Dom(Γ), written Γ ↓ A, is the environment with domain A and values (Γ ↓
A)(x) = Γ(x). Further, we say that an environment Γ enriches another envi-
ronment Γ′, written Γ ⊒ Γ′, if Dom(Γ) ⊇ Dom(Γ′) and Γ(x) = Γ′(x) for all
x ∈ Dom(Γ′).

The following restriction lemma can be proved by induction over the struc-
ture of expressions.

Lemma 2.1 (Elaboration closed under restriction) For all environments
Γ and Γ′, expressions e and types τ , if Γ ⊢ e : τ and Γ′ ⊒ (Γ ↓ flv(e)) then
Γ′ ⊢ e : τ .

Further, the following substitution lemma can be proved by induction over
the structure of expressions.

Lemma 2.2 (Elaboration closed under substitution) For all environments
Γ, expressions e, types τ and substitutions S, if Γ ⊢ e : τ then S(Γ) ⊢ S(e) :
S(τ).

2.2 Untyped Expressions

To obtain an untyped expression from a typed expression we define an erasure
operation er . A couple of the defining equations are given below.

er(λx : τ.e) = λx.er (e)

er(e1 e2) = er(e1) er(e2)

...

The dynamic semantics of the language relates untyped expressions to so
called values, under some assumptions associating values to variables. Thus, a
dynamic environment, E , maps lambda variables to values, which again conform
to the grammar:

v ::= clos(λx.e, E) | true | false | (v1, v2)

The rules of the dynamic semantics allows inferences among sentences of the
form E ⊢ e ⇓ v , where E is a dynamic environment, e is an untyped expression
and v is a value. To give meaning to recursive functions we allow creation of
non-well-founded objects; i.e. closures, cl∞, with the property

cl∞ = clos(λx.e, E + {f 7→ cl∞})

where x and f are lambda variables, e is an expression and E is a dynamic
environment [MT91].

4

Expressions E ⊢ e ⇓ v

E(x) = v

E ⊢ x ⇓ v
(11)

E ⊢ λx.e ⇓ clos(λx.e, E)
(12)

E ⊢ e1 ⇓ clos(λx.e, E0)
E ⊢ e2 ⇓ v E0 + {x 7→ v} ⊢ e ⇓ v′

E ⊢ e1 e2 ⇓ v′
(13)

E ⊢ e1 ⇓ v1 E ⊢ e2 ⇓ v2

E ⊢ (e1, e2) ⇓ (v1, v2)
(14)

i ∈ {1, 2} E ⊢ e ⇓ (v1, v2)

E ⊢ πi e ⇓ vi

(15)

E ⊢ e ⇓ true E ⊢ e1 ⇓ v

E ⊢ if e then e1 else e2 ⇓ v
(16)

E ⊢ e ⇓ false E ⊢ e2 ⇓ v

E ⊢ if e then e1 else e2 ⇓ v
(17)

E ⊢ e1 ⇓ v1

E + {x 7→ v1} ⊢ e2 ⇓ v2

E ⊢ let x = e1 in e2 ⇓ v2

(18) E ⊢ false ⇓ false
(19)

cl∞ = clos(λx.e1, E + {f 7→ cl∞})
E + {f 7→ cl∞} ⊢ e2 ⇓ v2

E ⊢ letrec f x = e1 in e2 ⇓ v2
(20) E ⊢ true ⇓ true

(21)

2.3 Expression Contexts

We define three notions of expression contexts; local expression contexts, al-
lowing one to single out a local expression (not going under a lambda or a
letrec construct); global expression contexts, allowing one to single out any sub-
expression; and multi expression contexts, allowing one to single out multiple
occurrences of an expression. A local expression context, L, takes the following
form.

L ::= [·] | L e | e L | (L, e) | (e, L) | πi L
| let x : σ = L in e | let x : σ = e in L
| letrec f : σ x = e in L
| if L then e1 else e2

| if e then L else e2

| if e then e1 else L

Further, global expression contexts, C, takes the following form.

5

C ::= L | L[λx : τ. C] | L[letrec f : σ x = C in e]

Finally, multi expression contexts, M , takes the following form.

M ::= [·] | e | λx : τ.M | M1 M2 | (M1, M2) | πi M
| let x : σ = M1 in M2 | if M then M1 else M2

| letrec f : σ x = M1 in M2

When C is either a local expression context, a global expression context or a
multi expression context, and e is an expression, the effect of filling C with e,
written C[e] is to replace all appearances of the hole in C with e. We write flv(C)
to mean the set of free lambda variables in C.

2.4 Small, Calling and Safe Expressions

A small expression is an expression with at most ksmall nodes in the abstract
syntax tree for the expression. The constant controls what non-recursive func-
tions are in-lined and what recursive functions are specialized. It is a trade-off
between code-size and speed. In the Kit a value of 20 is used.

An expression e is considered a calling expression if it can be written,
L[e1 e2], where L is any local expression context and e1 and e2 are any ex-
pressions.

The set of terminating expressions that cannot perform any side-effects on
the store and cannot raise any exceptions are candidates to dead code elimi-
nation and other kinds of optimising reductions. As a simple approximation
we consider an expression to be safe if it is not a calling expression and if it
cannot raise any exception or update the store. In the small example language
considered here an expression is safe if it is not a calling expression.

3 Simple Optimising Reductions

In the following we use the term reduction to refer to optimisation reductions,
relating expressions. We use −→ to range over reductions, and we say that e
reduces to e′ if e −→ e′. We now define what it means for a reduction to be
type preserving.

Definition 3.1 A reduction, −→, is type preserving, if for all environments
Γ, expressions e and e′, and types τ , such that Γ ⊢ e : τ and e −→ e′ then
Γ ⊢ e′ : τ . 2

The following lemma can be proved by induction over the structure of global
expression contexts.

Lemma 3.2 Assume −→ is type preserving. For all environments Γ, expres-
sions e and e′, global expression contexts C and types τ , if Γ ⊢ C[e] : τ and
e −→ e′ then Γ ⊢ C[e′] : τ .

We now present a set of simple optimising reductions. By use of Lemma 2.1
and Lemma 2.2 each of the reductions can be shown to preserve types.

6

3.1 Reduction of Projections from Explicit Records

Folding of conditional expressions on constants is implemented by value prop-
agation. Reduction of projections from explicit records is implemented by the
following rules.

π1 (e1, e2)
e2 safe
−→proj e1 (22)

π2 (e1, e2)
e1 safe
−→proj e2 (23)

3.2 Dead Code Elimination

Dead code elimination is implemented by the following rules.

let x : σ = e1 in e2

e1 safe
x 6∈ flv(e2)
−→dce e2 (24)

letrec f : σ x = e1 in e2
f 6∈ flv(e2)
−→dce e2 (25)

3.3 Let-reductions

Simple let-constructs are reduced and explicit applications of lambda-constructs
are reduced to let-constructs.

let x : ∀~α.τ = e1 in xil −→let e1{il/~α} (26)

(λx : τ.e2) e1 −→λ let x : τ = e1 in e2 (27)

3.4 Letrec-reductions

Several reductions are performed on letrec-constructs. Non-recursive functions
bound by letrec-constructs are reduced to let-bindings of lambda-constructs as
follows.

letrec f : ∀~α.τ1 → τ2 x = e1 in e2
f 6∈ flv(e1)
−→rec1 (28)

let f : ∀~α.τ1 → τ2 = λx : τ1.e1 in e2

The following reduction rule opens for other reductions.

(letrec f : σ x = e1 in fil) e2 −→rec2 (29)

letrec f : σ x = e1 in (fil e2)

7

4 In-lining Non-recursive Functions

In-lining (β-reduction) is an important optimisation for functional programs.
Non-recursive functions referenced only once may always be in-lined and small
functions referenced more than once may also be in-lined. The Kit implements
the following in-lining strategies.

let f : ∀~α.τ = λx : τ ′.e in C[fil]
f 6∈ flv(C)
−→inl1 C[(λx : τ ′.e){il/~α}] (30)

let f : ∀~α.τ = λx : τ ′.e in e′
e small
−→inl2 e′{((λx : τ ′.e){il/~α})/fil} (31)

5 Specializing Recursive Functions

Specialization of recursive functions is an important optimisation in a compiler
for a functional language [SW95]. In particular specializations of small functions
as fold and map with respect to their first arguments lead to important speedups
without drastically increasing the code size.

As an example consider the following Standard ML program.

let fun map f [] = []

| map f (x::xs) = f x :: map f xs

in map (fn x => x+1) [1,2]

end

By specializing recursive functions this program is transformed into the following
optimised program.

let fun map [] = []

| map (x::xs) = x+1 :: map xs

in map [1,2]

end

The function map is now first-order and further, the successor function is in-lined
into the body of the map function. This optimisation has an important effect on
performance.

Small recursive functions may be specialized according to the following rule.

letrec f : ∀~α.τ1 → (τ2 → τ3) x =

λy : τ2.M [f x]
in C[fil e]

f 6∈ flv(M)
M [f] small
−→spec1 (32)

letrec f : ∀~α.τ1 → (τ2 → τ3) x =

λy : τ2.M [f x]

in C

let x : τ1{il/~α} = e in

letrec f : (τ2 → τ3){il/~α} y =

M [f]{il/~α}
in f

8

Note that the original binding of the recursive function is not removed by the
reduction.

Even large recursive functions may be specialized. This is captured by the
following rule.

letrec f : ∀~α.τ1 → (τ2 → τ3) x =

λy : τ2.M [f x]
in C[fil e]

f 6∈ flv(M)
f 6∈ flv(C) ∪ flv(e)

−→spec2 (33)

C

let x : τ1{il/~α} = e in

letrec f : (τ2 → τ3){il/~α} y =

M [f]{il/~α}
in f

In this case the original binding of the recursive function is removed by the
reduction.

6 Value Propagation

By propagating information throughout a program about to what kinds of values
a variable is bound, it is possible to eliminate many unnecessary fetches from
records and unnecessary conditional checks. The set of abstract values AbsVal
is defined by the following syntax. We use V to range over AbsVal.

V ::= ⊤ | xil | (V1, V2) | true | false

We say that an abstract value V is simple if V is either a constant true or
false, or a variable xil . When V1 and V2 are abstract values we define the least
upper bound of V1 and V2, written V1 ⊓ V2, recursively as follows.

V ⊓ V ′ =

V if V = V ′ and V simple
(V1 ⊓ V ′

1 , V2 ⊓ V ′
2) if V = (V1, V2) and V ′ = (V ′

1 , V ′
2)

⊤ otherwise

Further, when V is an abstract value and x is a lambda variable, we define the
exclusion of x from V , written V \\ x, recursively as follows.

V \\ x =

⊤ if V = xil

(V1 \\ x, V2 \\ x) if V = (V1, V2)
V otherwise

A propagation environment Φ is a finite mapping from lambda variables to pairs
of a list of type variables and an abstract value.

Φ ∈ PropEnv = Lvar
fin
−→ TyVar(k) × AbsVal

Below we state a propagation function P : Lexp → PropEnv → Lexp×AbsVal.
Given an expression and a propagation environment the propagation function
P computes an optimised expression and an abstract value for the expression.

9

P [[true]] Φ = (true, true)
P [[false]] Φ = (false, false)

P [[λx : τ.e]] Φ = let (e′,) = P [[e]] (Φ + {x 7→ ([],⊤)})
in (λx : τ.e′, ⊤)

P [[e1 e2]] Φ = let (e′1,) = P [[e1]] Φ
(e′2,) = P [[e2]] Φ

in (e′1 e′2, ⊤)

P [[(e1, e2)]] Φ = let (e′1, V1) = P [[e1]] Φ
(e′2, V2) = P [[e2]] Φ

in ((e′1, e
′
2), (V1, V2))

P [[let x : ∀~α.τ = e1 in e2]] Φ =
let (e′1, V1) = P [[e1]] Φ

(e′2, V2) = P [[e2]] (Φ + {x 7→ (~α, V1)})
in (let x : ∀~α.τ = e′1 in e′2, V2 \\ x)

P [[letrec f : ∀~α.τ x = e1in e2]] Φ =
let (e′1,) = P [[e1]] (Φ + {f 7→ ([],⊤), x 7→ ([],⊤)})

(e′2, V2) = P [[e2]] (Φ + {f 7→ (~α,⊤)})
in (letrec f : ∀~α.τ x = e′1 in e′2, V2 \\ f)

P [[πi e]] Φ =

(Vi, Vi) if V = (V1, V2), Vi simple and e′ safe
(πi e′, Vi) if V = (V1, V2) and (Vi not simple or e′ not safe)
(πi e′, ⊤) otherwise

where (e′, V) = P [[e]] Φ

P [[if e then e1 else e2]] Φ =

(e′1, V1) if V ′ not simple, V = true and e′ safe
(e′2, V2) if V ′ not simple, V = false and e′ safe
(V ′, V ′) if V ′ simple and e′ safe
(if e′ then e′1 else e′2, V ′) otherwise

where (e′, V) = P [[e]] Φ
(Φt, Φf) = if V = x[] then (Φ + {x 7→ ([], true)},

Φ + {x 7→ ([], false)})
else (Φ, Φ)

(e′1, V1) = P [[e1]] Φt

(e′2, V2) = P [[e2]] Φf

V ′ = V1 ⊓ V2

P [[xil]] Φ =

(V, V){il/~α} if V simple
(xil , xil) if V = ⊤
(xil , V {il/~α}) otherwise

where (~α, V) = Φ(x)

10

7 Implementation

All optimisations presented here have been implemented in the ML Kit with
Regions compiler. Due to the sensitivity of region inference and region represen-
tation analyses w.r.t. changes in the program, the value propagation algorithm
used in the Kit is not as aggressive as the algorithm presented here.

A straight-forward implementation of the optimisation rules will quickly
show to be at least quadratic in the size of the program. Inspired by [AJ97]
the optimisations presented here are implemented in the Kit by two functions,
reduce and contract . The function contract maintains an environment and ap-
plies the function reduce on the way down the syntax tree and the way up the
syntax tree. The function reduce reduces redexes w.r.t. environment and us-
age information. It updates usage information when inserting and removing
sub-expressions.

Consider the expression let x = e1 in e2. On the way down, if there is
zero uses of x then eliminate e1 (if it is safe) and decrement uses in e1 prior to
recurring on e2. This may trigger in-lining in e2 of functions also applied in e1,
e.g. On the way up, if there is now zero uses of x then eliminate the binding (if
it is safe) and decrement uses in e1 prior to returning.

8 Conclusions

In this note we have presented a set of off-the-shelf optimisations for a typed in-
termediate language of the Kit which is a Standard ML compiler. It has not been
possible to present all optimisations performed in the Kit using the small exam-
ple language presented in this note. For instance, the intermediate language of
the Kit includes a fix-construct to allow for mutually recursive functions. As an
optimisation, the Kit minimises each fix-construct by finding strongly connected
components of the call-graph associated with each fix-construct.

Further, the Kit implements a few other optimisations that we do not men-
tion here. These are optimisations that are performed only to improve on region
inference.

References

[AJ97] Andrew W. Appel and Trevor Jim. Shrinking lambda expressions
in linear time. In Journal of Functional Programming, 1997.

[App92] Andrew W. Appel. Compiling With Continuations. Cambridge
University Press, 1992.

[BTV96] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region
inference to von Neumann machines via region representation in-
ference. In 23st ACM Symposium on Principles of Programming
Languages, January 1996.

11

[HJ94] Fritz Henglein and Jesper Jørgensen. Formally optimal boxing. In
21st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. Portland, Oregon, pages 213–226, Jan-
uary 1994.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In Principles of Programming Languages,
San Francisco, January 1995.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In Prin-
ciples of Programming Languages, pages 177–188, 1992.

[MT91] Robin Milner and Mads Tofte. Co-induction in relational semantics.
In Theoretical Computer Science 87, 1991.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, 1997.

[SW95] Manuel Serrano and Pierre Weis. Bigloo: a portable and optimizing
compiler for strict functional languages. In Second International
Symposium on Static Analysis (SAS), pages 366–381, September
1995.

[TBE+97] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Højfeld Olesen, Peter Sestoft, and Peter Bertelsen. Pro-
gramming with regions in the ML Kit. Technical Report DIKU-TR-
97/12, Dept. of Computer Science, University of Copenhagen, 1997.
(http://www.diku.dk/research-groups/topps/activities/kit2).

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-value λ-calculus using a stack of regions. In 21st ACM Sym-
posium on Principles of Programming Languages, January 1994.

12

