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Chapter 1
Introduction
The language Standard ML can be thought of as a strict functional language providing impera-tive features. The language is naturally split into a core language, that provides many featuresfor programming in the small, and a module language for programming in the large.Since the �rst ML compiler was built in 1977 [Pau91, page 1] many other compilers havebeen implemented. The language Standard ML and its semantics have evolved over a periodof about 17 years [MTH90, page 81] with contributions of many people.Existing implementations of the Standard ML language all have some kind of limitations.The Standard ML of New Jersey system, for example, takes a lot of memory and is cumbersometo port since it produces native machine code. Other implementations have drawbacks such asslow evaluation or in that they fail to evaluate phrases of Standard ML correct as de�ned inThe De�nition of Standard ML [MTH90].At the time of writing new implementations of the Standard ML language are under devel-opment. Parallel to my work Sergei Romanenko has developed a core Standard ML compilerthat generates byte code and executes it on an abstract machine. This core Standard MLcompiler, called Moscow ML, is partly a modi�cation of the Caml Light system with the staticelaboration part replaced with the corresponding parts of the ML Kit system (see below).Moscow ML is to a large extend the result of work related to our �rst attempt to implement aportable Standard ML compiler.The ML Kit system, that is a Standard ML compiler written in Standard ML and whichis very modular, has grown drastically during this period of time. Especially, it is worthmentioning a new back-end for the ML Kit system that uses a stack of regions [Tof94]. Inthis scheme garbage collection can be avoided since allocation and de-allocation of data can beplanned statically1.There is a need for a portable and small implementation of Standard ML that generatescompact code. This report deals with several aspects of the implementation of a compiler for thelanguage Standard ML. The report is split into two parts. The �rst part describes an attemptto change a front-end of an existing compiler (the Caml Light system) into a Standard ML1This implementation of the new back-end based on regions has been developed by Mads Tofte and LarsBirkedal at the University of Copenhagen. 1



2 CHAPTER 1. INTRODUCTIONcompiler. The result is the MiniMl compiler which implements a subset of the core languageof Standard ML and which has a module system that supports separate compilation. TheMiniMl compiler is capable of compiling many small Standard ML example programs, butunfortunately the type checker of the Caml Light system is not safe. Also, it does not supportbuilt-in overloading and it has no notion of equality types and imperative types. To implementthese features would be very time consuming though the algorithms could be adapted from theML Kit system. It seemed that the entire front-end would have to be substituted (rewritten inCaml Light) with the front-end of the ML Kit system.The second part of the report is about a new approach. The idea is to construct a newback-end for the ML Kit system. At the time of writing the ML Kit system compiles phrasesof core Standard ML into an extended typed lambda language. We show how constructs ofthis lambda language can be compiled into sequential code that can be executed on an abstractmachine. The abstract machine is a modi�ed version of the abstract machine of the Caml Lightsystem. Because of the high level instructions (compared to machine instructions) of the Zincabstract machine one may �nd that the code generated by such a compiler is very compact.It is possible for this work to result in a portable version of the ML Kit system by boot-strapping the ML Kit system. Due to ine�ciencies in the front end of the ML Kit system this isnot possible with the present version of the compiler2. Also, the system is not able to translatephrases of the Standard ML module language into constructs of the typed lambda languagethat is processed by the back-end. At a later stage however, when these ine�ciencies andlimitations are eliminated, it should be possible to bootstrap the compiler and hence achieve aportable Standard ML compiler that generates compact code.The �rst part of the report discusses most parts of the front-end of a core Standard MLcompiler. See chapter 2 for a separate introduction. The second part of the report discussesa back-end and a runtime system for a Standard ML compiler. See chapter 8 for a separateintroduction.Whereas the �rst approach is to replace the front-end of an existing compiler (the CamlLight system) the second approach is to replace the back-end of an existing compiler (the MLKit system) to obtain a portable Standard ML implementation that generates compact code.

2The version of the ML Kit system that has been used is the 1.0 version with a few extensions (as of April6, 1994). The lambda language is in this version a typed language and core elaboration is more e�cient.
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Chapter 2
The Caml Light System as Point ofDeparture
In the �rst part of this report we describe how a compiler for a portable version of a subset ofStandard ML, namely MiniMl 1, can be developed. The idea is to translate phrases of thissubset of Standard ML into binary code that can be evaluated on an abstract machine. Theabstract machine is part of the Caml Light system developed at INRIA [Ler93, Ler90b].The construction of the compiler builds on the bootstrapping capability of the Caml Lightsystem. We change the front-end of the compiler, so that a subset of phrases of Standard MLcan be parsed, elaborated and compiled to run on the existing abstract machine of the CamlLight system.TheMiniMl compiler is not a Standard ML compiler in that it fails to compile all phrasesof the Standard ML core language. Also, the module system that MiniMl supports di�ersfrom the module language of Standard ML in many ways. The MiniMl compiler is writtenentirely in Caml Light. The compiled byte code is executed on the abstract machine of theCaml Light system, that is written in C.In the following the di�erent stages of the compilation process will be described.2.1 Overview of the compiler for MiniMlIn �gure 1 the di�erent steps of compilation are illustrated.The lexical analysis converts characters to tokens, and it is implemented by use of CamlLex which is a tool for constructing scanner algorithms, suitable for Caml Light. The lexicalanalyzer for MiniMl is a modi�cation of the lexical analyzer for the Caml Light system. Theparser converts correct phrases (sequences of tokens) into an abstract syntax tree. This abstractsyntax is basically the abstract syntax of Caml Light, though some additional constructs havebeen added. The reason is that not all constructs of Standard ML have a correspondingconstruct in Caml Light, and only a tiny subset of Standard ML can be implemented without1The nameMiniMl stands for Mini Meta language.5



6 CHAPTER 2. THE CAML LIGHT SYSTEM AS POINT OF DEPARTUREan abstractsyntax tree
an abstractsyntax tree

- -

--
� �

?

Resolution of in�xes

The back end

The parserThe lexical analyser

The binary code emitter

tokens

codesequential binarycode The abstract machine(Zinc)
The type checkerFront endmatch compilerandenrichedlambdalanguage syntax treean abstract

Figure 2.1: Overview of the compiler.changing the abstract syntax of Caml Light. In�x resolution in Caml Light is handled in away that does not correspond to the in�x resolution of Standard ML, hence it is necessary tointroduce a new phase in the compiler for resolving in�xes. The method of ML Kit is adoptedfor this purpose.The type checker checks that phrases that have been parsed are well typed and it infers typesfor all expressions. It is also at this stage that overloading of built-in operators in Standard MLis solved. The type checker of Caml Light does not support overloading of built-in operatorsand it also lacks some other properties that a type checker for Standard ML should have.It is the job of the match compiler and the front-end to convert the abstract syntax tree intoterms in the enriched lambda language. The match compiler eliminates all pattern bindings inthe abstract syntax tree producing phrases of the enriched lambda language. Other constructsin the abstract syntax tree are converted into the enriched lambda language by the front-end.The enriched lambda language is translated into sequential code by the back-end and thenconverted into binary code by the binary code emitter. The binary code can then be executedon the abstract machine, the Zinc-machine.Most of the problems arising when converting the Caml Light compiler into a Standard MLcompiler are compile time problems. That is, the abstract machine need not be changed radi-cally. Local declarations, such as type, data type and exception declarations are not supportedby Caml Light. It is important to notice however, that implementation of such declarations isonly a matter of scope and hence a compile time problem2.There are however, some runtime problems. Caml Light evaluates expressions right to left32Note that exceptions in Caml Light are not generative as in Standard ML.3In this way curried functions can be implemented very e�ciently [Ler90b, page 14]



2.1. OVERVIEW OF THE COMPILER FOR MINIML 7in contrast to Standard ML, in which expressions are evaluated left to right. This problem canonly be solved e�ciently by changing the abstract machine. Also, the semantics of equalitydi�ers between the Caml Light system and Standard ML and some of the basic operatorssuch as div and mod behaves di�erently. These problems relates to the dynamic behavior ofMiniMl .The module language of Standard ML is very di�erent from the module language of CamlLight. The module language of Caml Light is simpler than that of Standard ML but it has oneadvantage, namely that it directly supports separate compilation. It is rather easy to adapt themodule language of Caml Light for theMiniMl system though it is not true to The De�nition.The module language of Standard ML however, supports better reusability of code than mostother module systems (by parameterization).In appendix A there is a list of �les of source code that have been constructed or altered.Also, there is a description of how to startup the MiniMl system.This part of the report is organized as follows. Lexical analysis and parsing is discussed inchapter 3, and chapter 4 describes how in�xes are resolved. In chapter 5 type checking andtype inference are studied. In chapter 6 the dynamic aspects of MiniMl are discussed. Theactual syntax and an informal semantics for the MiniMl language are presented in chapter 7.
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Chapter 3
Parsing
The lexical analysis of the source code to be compiled converts characters to tokens which areaccepted by the parser. The parser converts sequences of tokens into an abstract syntax tree.3.1 Lexical analysisAs a tool for constructing a lexical scanner Caml Lex [Ler93, pages 113{115], which is a lexicalanalysis tool for Caml Light, is used. The input �le for Caml Lex is basically the scanner forthe ML Kit system though it is translated to the style required by Caml Lex. The scannereliminates comments and recognizes strings within double quotes and several types of constantsand identi�ers. Reserved names are kept in a hash table; all identi�ers found in this table aremarked as reserved.Both keywords that are parts of the core language and keywords that are parts of the modulelanguage of Standard ML are delivered to the parser as keywords. To implement the modulelanguage of MiniMl an additional keyword close is needed. A hash table is used to decidee�ciently whether a scanned string should be treated as an identi�er or a keyword.3.2 The abstract syntaxBefore discussing the parsing phase it is necessary to discuss what is required of the parser.First of all the parsing phase should return an abstract syntax tree for further processing.In the ML Kit system the abstract syntax, in most cases, directly corresponds to the gram-mar. When attempting to create an abstract syntax tree that suits the front-end of the CamlLight system, a direct approach cannot be used in every case. The abstract syntax for theML Kit system is more complicated than the abstract syntax for the Caml Light system, inthat it consists of far more levels. As an example, the ML Kit system distinguishes betweenexpressions and atomic expressions in the abstract syntax. This is not the case for the abstractsyntax of the Caml Light system. This fact however, will not cause any problems, apart frommore complicated code. 9



10 CHAPTER 3. PARSINGNot all parts of the abstract syntax of the Caml Light system are needed. The constructorZorpat, that is a part of the type pattern desc is not needed. Neither are the constructors Zfor,Zvector, Zstream and Zparser and the constructors used for dealing with records. These areall parts of the type expression desc. The constructors Zexpr and Zimpldirective, which are ofthe type impl desc are not needed either. Parts of the abstract syntax that deals with typesand exceptions are moved to another level in the abstract syntax, namely the declaration level.These constructs involve changes in the front end also. Implementing the construct \let dec inexp end" also requires changes in the abstract syntax. The abstract syntax is split into manydatatype constructs, and only the main datatype constructs will be discussed here1. Most ofthe datatype constructs are mutually recursive and depend on types not described here.A type expression is parsed into one of four constructs.datatype type expression =Typexp of type expression desc � locationand type expression desc =Ztypevar of stringj Ztypearrow of type expression � type expressionj Ztypetuple of type expression listj Ztypeconstr of global reference � type expression listThe location information, that is a part of the datatype type expression, is used for errorreporting. Error reporting will be discussed in a subsequent section.Patterns are represented by one datatype construct. There is no distinction between pat-terns and atomic patterns as in The De�nition of Standard ML [MTH90, page 73] or as in theML Kit system.datatype pattern =Pat of pattern desc � locationand pattern desc =Zwildpatj Zvarpat of stringj Zaliaspat of pattern � stringj Zconstantpat of atomic constantj Ztuplepat of pattern listj Zconstruct0pat of constr desc globalj Zconstruct1pat of constr desc global � patternj Zconstraintpat of pattern � type expressionj Zunrespat of pattern listj Zunresidentpat of (string list) op ident optNot all patterns are resolved at the stage of parsing. It is necessary to introduce two moreconstructs representing these unresolved patterns. Zunrespat is used to resolve sequences ofpatterns, and Zunresidentpat is used to resolve whether an identi�er is a constructor or a value.1All parts are shown using Standard ML notation



3.2. THE ABSTRACT SYNTAX 11Expression are represented as shown below. As for patterns no distinction is made betweenatomic expressions and expressions.datatype expression =Expr of expression desc � locationand expression desc =Zident of expr ident refj Zconstant of struct constantj Ztuple of expression listj Zconstruct0 of constr desc globalj Zconstruct1 of constr desc global � expressionj Zapply of expression � expression listj Zlet of bool � (pattern � expression) list � expressionj Zfunction of (pattern list � expression) listj Ztrywith of expression � (pattern � expression) listj Zsequence of expression � expressionj Zcondition of expression � expression � expressionj Zwhile of expression � expressionj Zsequand of expression � expressionj Zsequor of expression � expressionj Zconstraint of expression � type expressionj Zvector of expression listj Zassign of string � expressionj Zunresexp of expression listj Zunresident of (string list) op ident optj Zunreslet of declaration list � expressionWhen parsing expressions the in�x status of each identi�er is not known. Neither is it certainwhether an identi�er is a constructor or a value. Since it is necessary to delay this resolutiontwo extra constructs, Zunresexp and Zunresident, are introduced. To be able to parse twodeclarations without a separating semicolon the construct Zunreslet is introduced.Although the grammar distinguishes between declarations and top level declarations, theseconstructs are not distinguished in the abstract syntax.and declaration =Dec of dec desc � locationand dec desc =Zvaldef of bool � (pattern � expression) listj Ztypedef of (string � string list � type decl) listj Zexcdef of constr decl listj Zin�x of int � string listj Zin�xr of int � string listj Znon�x of string listj Zimpldirective of directiveuj Zemptyj Zunresfun of (pattern list � type expressionlist � expression) list list



12 CHAPTER 3. PARSINGTo resolve in�xes at a later stage the three kinds of in�x declarationsin�x h d i id1 � � � idnin�xr h d i id1 � � � idnnon�x id1 � � � idnare parsed into equivalent constructs. When in�xes are resolved the corresponding declarationconstructs have been removed from the abstract syntax tree. fun-declarations are also solvedat the stage of in�x resolution, hence it is necessary to introduce the construct Zunresfun inthe abstract syntax tree. The construct Zempty is used to represent empty declarations.The module language of MiniMl allows one to specify a signature (or interface) �le, con-taining a sequence of signature speci�cations, for each implementation �le. A signature speci-�cation is parsed into the following construct.datatype intf phrase =Intf of intf desc � locationand intf desc =Zvaluedecl of (string � type expression � prim desc) listj Ztypedecl of (string � string list � type decl) listj Zexcdecl of constr decl list3.3 The grammarThe grammar for Standard ML is described in The De�nition of Standard ML [MTH90]. Mostof the grammar is given in BNF{notation, but restrictions and some additions are mentionedeither in the text or as footnotes. It is necessary to add restrictions to the grammar given inBNF{notation, to eliminate ambiguities.The grammar for MiniMl is given in chapter 7 in BNF{notation and is closely related tothe grammar for Standard ML. It builds on the grammar for the ML Kit system, for whichmost ambiguities are eliminated.Most of the productions and their actions are straightforward and will not be discussedhere. As in Standard ML of New Jersey the implementations of \val ValBind" and \val recFnValBind" are separated to avoid strange statements like \val rec rec rec : : :" [Lab93b, part3.6].The expression \let decs in exp1 ; : : : ; expi end" where decs contains more than onedeclaration, is translated to be equivalent to \let dec1 in let dec2 in : : : exp1 ; : : : ; expi : : :end end". The semantics for these two kinds of expressions are the same for Standard ML,though this is not mentioned in The De�nition of Standard ML [MTH90].



3.4. ELIMINATION OF AMBIGUITIES 133.4 Elimination of ambiguitiesIt is not possible to eliminate all the ambiguities in Standard ML by changing the grammar.This problem is solved by accepting a superset of phrases in the language. Then later, in theresolution process or in the actions of the input �le for Caml Yacc [Ler93, pages 116{120], theambiguities are resolved. Phrases that are not acceptable will be detected and then result inan error message. In the following the ambiguities that cannot be eliminated by changing thegrammar will be discussed.Constructors that take arguments must be treated as functions if no arguments are given.That is, it is necessary to detect whether a constructor located in an expression takes anargument or not. Either it takes an argument or it does not take an argument. It is notpossible however, at the stage of parsing to determine whether an identi�er is a constructor ora variable. For this reason the resolution of identi�ers is done at the stage of in�x resolution.In order to parse the pattern construct \hopi varh: tyi as pat" it is necessary to parsethe construct \pat1 as pat2" to avoid introducing an ambiguity in the grammar. When such apattern is parsed it can easily be checked that pat1 is indeed a variable. If this is not the casethe construct is rejected.As mentioned earlier several other constructs cannot be resolved at parse-time. Most ofthese constructs will be discussed in chapter 4.3.5 Reporting errorsAll location information of the source code to be scanned and parsed is handled quite nicely inthe Caml Light system. Actions for productions which are similar for the Caml Light systemand the ML Kit system appears simpler in the Caml Light system, since the location informationis hidden. In Standard ML of New Jersey errors are reported by showing an interpretation ofthe source code, not by showing the source code itself. It seems to be easier for the user tounderstand an error when presented the source code, rather than an interpretation of the sourcecode.Location information is represented by the following construct.datatype location = Loc of int � intThe �rst integer of the constructor tells the position in the corresponding �le of the �rstcharacter of the associated language construct. The second integer tells the position of thecharacter following the associated language construct. During scanning and parsing all languageconstructs become associated with location information. This can be done easily since locationinformation associated with some sub-constructs of a larger construct is available when thislarger construct has been parsed; it is only necessary to deduce the correct location informationfor the larger construct from location information of the sub-constructs.Not all syntax errors are caught at the time of parsing. When parsing the construct



14 CHAPTER 3. PARSING\pat1 as pat2" an exception is raised if pat1 is not of the form \hopivarh: tyi". This ex-ception is handled in the �le compiler.ml together with other error handling exceptions. Thishowever, causes no problems besides from some syntax errors appearing later in the sourcecode to be reported earlier. The same is true for errors in sequences of patterns or expressionsand function bindings which are checked at the time of in�x resolution. In all cases locationinformation is reported to the user.



Chapter 4
Resolving In�xes
It is the job of the parser to create an abstract syntax tree. For many languages it is possibleto incorporate the in�x status, such as precedence and associativity, of the operators into thegrammar for the language. However, when the language becomes as dynamic as Standard MLit is impossible to do this. Standard ML gives the programmer the possibility of rede�ning anoperator, creating new operators and changing the precedence and associativity of an operatorthat is already de�ned. For many functional languages which do not give the programmer thesepossibilities, a resolved abstract syntax tree can be constructed during parsing, using only onepass. In the case of Standard ML however, it is necessary to leave some of the sub trees in theabstract syntax tree unresolved at the time of parsing. This is done simply by creating a nodein the abstract syntax tree that includes all the information that is given at parse time. Inthis way it is possible to resolve this node, the unresolved subtree, when su�cient informationabout each identi�er is available.The in�x resolution technique is adopted from the ML Kit system and builds on the algo-rithm described in [ASU86, page 203]. Additional constructors are added to the expression andpattern types. During resolution these additional constructors are replaced by constructionsthat suit the front-end of the compiler, that is the translation of an abstract syntax tree to anextended lambda language construct. As mentioned above the resolution is done by traversingthe abstract syntax tree. There are three kinds of nodes in the abstract syntax tree, created bythe parser that need to be solved with respect to an environment, containing information aboutthe �xity of identi�ers. These three kinds of unresolved nodes include a node for unresolvedsequences of expressions, a node for unresolved sequences of patterns and a node for unresolvedsequences of fun{declarations. Nodes that do not contain any of the above unresolved nodesas sub nodes, need not be traversed1An environment containing information about the �xity of identi�ers is called an in�x basis.To resolve the abstract syntax tree it is necessary to introduce some simple operations on in�xbases. These operations include addition of an identi�er and its in�x information to an existingin�x basis, and union of two in�x bases. The in�x basis is implemented as a global variablewhich is updated when a new declaration has been compiled. This compilation might resultin additions to the in�x basis. In Standard ML the in�x basis, in a given scope, can only be1Notice however, that some identi�ers still need to be resolved. An identi�er is resolved as soon as it can bedetected whether it is a constructor or a value. 15



16 CHAPTER 4. RESOLVING INFIXESchanged by use of the keywords in�x, in�xr and non�x. An in�x operator becomes non�xwhen pre�xed by the keyword op, where allowed.The unresolved abstract syntax constitute a superset of what should be included in theresolved abstract syntax. For this reason it is necessary to introduce a new exception to handleerrors detected in the in�x resolution. This exception is handled in the �le compiler.ml as otherexceptions used for error handling.4.1 Expressions and patternsThe method by which the resolution of unresolved sequences of expressions and patterns pro-ceeds is by use of a stack. The input to the resolving functions for expressions and patternsis respectively a list of expressions and a list of patterns. The result of the resolution is re-spectively an expression and a pattern (resolved nodes in the abstract syntax tree). The stackis used to stack operators and their �xity such that the resulting node with non�x and in�xapplications in place can be deduced. To spot applications (two successive operands with nointervening operator) it is necessary to keep track of the last expression respectively patternparsed in the resolution process.4.2 Function declarationsThe syntax rules of fun-bindings are described in The De�nition of Standard ML [MTH90,appendix B, �g 20] as a footnote. These rules are formalized below2. The parser delivers afun-binding as a sequence of patterns, followed by an optional \: ty", and \=" and so on. Ofthis general syntax we permit the following declarations:fun Non�xID Non�xAP+ (: Ty) = : : :fun op ID Non�xAP+ (: Ty)? = : : :fun (Non�xAP In�xID Non�xAP) Non�xAP� (: Ty)? = : : :fun Non�xAP In�xID Non�xAP (: Ty)? = : : :In the above regular expressions Non�xID is any identi�er which is not an in�x. In�xID is anidenti�er with in�x status and Non�xAP is any atomic pattern other than an isolated identi�erwhich has in�x status. ID is any identi�er except \=".
2This formalization is from The ML Kit code.



Chapter 5
Type Checking
The type checker is the part of the functional programming language implementation thatreports to the user information about types of the declared variables and functions. As thename suggests it also checks that the declarations are well{typed. Standard ML is an implicitlyand polymorphically typed language. It is an implicitly typed language, since it is optional (inmost cases) whether the user should constrain type expressions, and it is polymorphic, since itis possible to de�ne functions that takes arguments of di�erent types.Basic polymorphic type checking, which is known as Milner's polymorphic type discipline, isdescribed in a number of papers, books and articles [Mil78, DM82, Car86, Joh93, Ler92, Jon87,Tof88]. This discipline will be discussed in section 5.1.Standard ML also provides imperative features such as references to variables. To combinepolymorphism with these imperative features is not an easy task [Tof88, Ler92]. It is importantthough, to provide these features in a functional language since certain algorithms cannot bee�ciently implemented otherwise.5.1 The basic theory of type checkingThe ideas illustrated in this section are basically those described in [DM82] and [Car86]. Read-ers who are familiar with these papers should skip this section. The section is added forcompleteness and to let the reader become familiar with the notation.Given a simple applicative language and a syntax of the type system, type inference rulescan be de�ned. It is then possible to infer the type for a given expression in the language[DM82].5.1.1 The tiny example languageThe essence of type checking Standard ML can be explained by type checking a much simplerexample language. Also, since most of the language can be built from some basic constructs17



18 CHAPTER 5. TYPE CHECKING(e.g. the enriched lambda calculus) we only need to consider a tiny subset of the language.The syntax of the tiny example language follows below.exp ::= Idj integerj booleanj exp1 exp2j fn Id ) expj let val Id = exp1 in exp2 endj ( exp, exp )In this language, \Id" is any identi�er, and to avoid ambiguities the application exp1 exp2associates to the left (as usual).5.1.2 Typing the tiny example languageSince it is not possible to constrain types to a value or a function explicitly, the examplelanguage is purely implicitly typed. It is the task of the type inference to fail if an expression isill typed and to infer the correct principal type, that is the most general type, if an expressionis well typed. If a set of type variables � and a set of primitive types o (iota), such as integersand booleans, are given, the syntax of types � can be given as� ::= �j oj � ! �j � � �It is not su�cient however, to infer a type of an expression simply by unifying a typevariable with the types of the expressions that the given expression is associated to. Thiswould be su�cient if no polymorphism were intended. In the constructlet val identity = fn x ) xin (identity true, identity 4)endit should be possible to apply the function identity on arguments of any type. Otherwisepolymorphism would be very restricted. This is achieved by using type schemes �:� ::= �j 8��The quanti�ed type variables � in a type scheme 8�� are called generic type variables andthose that are not quanti�ed are called non{generic or unknowns [Joh93, page 8] [Jon87, page



5.1. THE BASIC THEORY OF TYPE CHECKING 19172]. A type environment maps every variable name in scope to its type scheme, and whenevera variable goes out of scope it should disappear from the current type environment. Generictype variables can be de�ned as follows [Car86]:A type variable, occurring in the type of an expression exp is generic (with respect toexp) i� it does not occur in the type of the identi�er of any fn-expression enclosingexp. That is, when it does not occur free in the type environment.When a variable or a function is de�ned, a type scheme for this variable is introduced orrede�ned1 in the environment. Each time a variable is used the type scheme is instantiatedsuch that new type variables are introduced in the type that is associated with the use of thevariable.Not all type variables however, should be instantiated in order for the algorithm not tomake wrong conclusions. Only generic type variables in a type scheme should be replacedwith new type variables during instantiation. Non-generic type variables are simply copiedwhen instantiation takes place. The reason why these two kinds of type variables has to bedi�erentiated can be illustrated by the following example:let val badpair = fn d ) (d true, d 3)in : : :endAt �rst it seems that the abstraction badpair can be given the type (� ! �) ! (� � �). Butthen consider applying the badpair to the abstraction (fn n ) n + 1) which certainly is ofthe type � ! �. This will result in applying (fn n ) n + 1) to true hence the type checkingalgorithm has failed. There are sound extensions of Milner's type system that can type suchexpressions [Car86] but there seems to be no need of doing so as long as it is possible to typethe function pair in the example below. In summary , lambda-bound variables do not havetheir types generalized; only let-bound variables do.Given a substitution S = [�i=�i] from type variables �i to types �i, and a type scheme �,then S� is a new type scheme, an instance of �, where all free occurrences of �i are replacedby �i and where all generic type variables which appear in any �i are replaced by new typevariables. A generic instance �0 = 8�1 : : : �n� 0 of a type scheme � = 8�1 : : : �m� is a typescheme where some of the generic type variables in � have been substituted. We write � � �0.� is said to be more general than �0 and it can be shown that i�, for all � 00, whenever �0 � � 00then also � � � 00 [MTH90, page 19].5.1.3 Type inference rules for the tiny example languageAn assumption x : � maps an identi�er to a type scheme. In the following we require that no setof assumptions contains more than one assumption about each identi�er. A set of assumptions1If the variable is rede�ned the type scheme in the environment should be rede�ned.



20 CHAPTER 5. TYPE CHECKINGis denoted by A. The binary operator ] is de�ned as follows:A1 ] A2 � f(id : �) j (id : �) 2 A2 _ ((id : �) 2 A1 ^ :9�0:(id : �0) 2 A2)gThe operator ] overwrites the assumptions in A1 by those in A2.The following type inference rules de�ne what it means for an expression exp to be well{typed with type � under given assumptions A.TAUT : A ` id : � ((id : �) in A)INST : A ` exp : �A ` exp : �0 (� � �0)GEN : A ` exp : �A ` exp : 8�� (� not free in A)COMB : A ` exp : � 0 ! � A ` exp0 : � 0A ` (exp exp0) : �ABS : A ] fid : � 0g ` exp : �A ` (fn id) exp) : � 0 ! �LET : A ` exp : � A ] fid : �g ` exp0 : �A ` (let val id = exp in exp0 end) : �TUP : A ` exp : � A ` exp0 : �0A ` (exp; exp0) : � � �0These inference rules consist of one axiom TAUT and a collection of ordinary inference rules.In addition to the inference rules shown in [DM82] the inference rule TUP is added to type tuplesof two elements. Note that the example language does not provide any mechanism for selectingthe �rst component of a tuple. Built-in functions however, such as #1 : 8�:8�:� � � ! � and#2 : 8�:8�:� � � ! � for selecting a component of a tuple could be provided.The following example illustrates how the inference rules are used to prove that an expressionhas a given type. To show that the identi�er pair in the expressionlet val pair =let val id = fn x ) xin (id true, id 4)endin : : :endhas type (bool � int) in the body (� � �) of the let-expression, a proof tree is built. It is necessaryto split the tree into pieces to make it �t on a page. The proofs of some of the branches follow



5.1. THE BASIC THEORY OF TYPE CHECKING 21the main proof. Besides from the rules listed above we implicitly use a weakening rule to carryout the proof. The weakening rule is de�ned as:WEAK : A ` exp : �B ] A ` exp : �The proof is as follows:
LET GEN ABS TAUT fx : �g ` x : �` (fn x ) x ) : � ! �` (fn x ) x ) : 8�:� ! � fid : 8�:� ! �; true : bool ; 4 : intg` (id true; id 4 ) : bool � intftrue : bool ; 4 : intg ` (let val id = fn x ) x in (id true; id 4 ) end) : bool � intTUP fid : 8�:� ! �; true : boolg ` (id true) : bool fid : 8�:� ! �; 4 : intg ` (id 4 ) : intfid : 8�:� ! �; true : bool ; 4 : intg ` (id true; id 4 ) : bool � int
COMB INST TAUT fid : 8�:� ! �g ` id : 8�:� ! �fid : 8�:� ! �g ` id : bool ! bool TAUT ftrue : boolg ` true : boolfid : 8�:� ! �; true : boolg ` (id true) : bool

COMB INST TAUT fid : 8�:� ! �g ` id : 8�:� ! �fid : 8�:� ! �g ` id : int ! int TAUT f4 : intg ` 4 : intfid : 8�:� ! �; 4 : intg ` (id 4 ) : intAt some points in the proof, though not mentioned, it is necessary to check the additionalconditions of the inference rules INST and GEN. These additional conditions are required tohold whenever INST or GEN is used in order to make correct conclusions. Note that thepolymorphic type (type scheme) 8�:� ! � is inferred for id , and that two di�erent instancesare created during type checking, namely bool ! bool and int ! int .It is interesting to notice that in the example above, it is necessary to guess the type ofthe expression (fn x ) x ) when using the LET inference rule. For this reason an algorithmdetermining the type of an expression that builds directly on such an inference system will bequite ine�cient.5.1.4 An algorithm for type checkingAs mentioned it is not easy to apply the inference rules to an arbitrary expression in thelanguage in order to �nd its type. In the following it will be discussed how an algorithm forthe purpose of �nding the type of such an arbitrary expression can be constructed.Instead of guessing a type of x for which a type cannot directly be inferred, the idea is toassociate a new type variable, � to x . Whenever x is used and its type is expected to be � ,



22 CHAPTER 5. TYPE CHECKINGthe equation � = � is introduced. To make sure that this equation holds the type variable� and the type � are uni�ed. In general two types, � and � 0 that should have the same typeare uni�ed and the uni�cation algorithm produces a substitution S , that maps the free typevariables in � and � 0 to types.To implement an algorithm for �nding a type of an arbitrary (valid) expression a uni�ca-tion algorithm is needed. As proposed in [DM82, Rob65] this algorithm U has the followingproperties:� Given a pair of types it will either return a substitution V or it will fail.� If U(�; � 0) returns V then V uni�es � and � 0 in the sense that V � = V � 0. (V is a uni�erof � and � 0)� If S uni�es � and � 0 then U(�; � 0) returns a substitution V and 9R:S = R � V . (V is themost general uni�er of � and � 0)� If U(�; � 0) returns V then V will only map type variables involved in � and � 0 (V is theidentity on everything else).Recall that only type variables not free in the assumptions should be generalized (madegeneric) in \let val Id = exp1 in exp2 end". For this reason it is necessary to de�ne theclosure of a type � with respect to assumptions A as follows:A(�) = 8�1 : : : �n�where �1; : : : ; �n are type variables which are free in � but not in A.The speci�cation of the algorithm W is written in a loose form of Standard ML, meaningthat an abstract notation is used when appropriate. It is assumed that the expression that isto be typed, is parsed and translated into an abstract syntax tree. This syntax tree is de�ned,using the notation of Standard ML, as:type idtype = string ;datatype exptype =Id of idtypej App of exptype � exptypej Fn of idtype � exptypej Let of idtype � exptype � exptypej Tup of exptype � exptype;The algorithmW takes as arguments a set of assumptions A and an abstract representationof an expression (of the type exptype). W returns a substitution S and a principal type of theexpression speci�ed in the argument. The algorithm W can be de�ned as:fun W (A, exp) =case exp ofId (x ) ) if (x :8�1 : : : �n� 0) 2 A



5.1. THE BASIC THEORY OF TYPE CHECKING 23thenlet val �1 : : : �n = newtypvar()in ([], [�i=�i] � 0)endelseraise failj Int (i) ) ([], int)j Bool (b) ) ([], bool)j App (exp1 , exp2 ) )let val (S1; �1) = W (A, exp1 )val (S2; �2) = W (S1 A, exp2 )val � = newtypvar()val V = U (S2�1; �2 ! �)in (V S2S1; V �)endj Fn (x , exp1 ) )let val � = newtypvar()val (S1; �1) = W (A ]fx : �g, exp1 )in (S1; S1� ! �1)endj Let (x , exp1 , exp2 ) )let val (S1; �1) = W (A, exp1 )val (S2; �2) = W (S1Ax [ fx : S1A(�1)g, exp2 )in (S2S1; �2)endj Tup (exp1 , exp2 ) )let val (S1; �1) = W (A, exp1 )val (S2; �2) = W (A, exp1 )in (S2S1; (S2�1)� �2)end;In the algorithm above Ax is de�ned as:Ax � f(y : �) 2 A j y 6= xgThe function newtypvar() creates a new type variable and the notation S2S1 stands for com-posing the substitutions S2 and S1. This substitution has the property:(S2S1)� = S2(S1�)



24 CHAPTER 5. TYPE CHECKINGS2� stands for applying the substitution S2 on the type � and the notation [] above simplystands for the empty substitution, that is []� = � for all type schemes (identity{operation.)The typing of the let{construct requires an explanation. To implement polymorphism it isnecessary to generate a type scheme for the identi�er x. In this type scheme all type variables�1 : : : �n occurring in �1 but not in S1A should be generalized. For this reason the closureS1A(�1) is computed. Type variables which occur in �1 but are not generalized, correspondsto non{generic type variables introduced on a higher level, since such type variables will occurboth in S1A and in �1. Notice that if non{generic type variables are detected when buildingthe closure S1A(�1) then the construct must be a subexpression of an expression of the form\fn Id ) exp".A polymorphic type inference algorithm, as the one described here, when applied to purelyapplicative languages can be proved to be sound in the sense that it does not make any wrongconclusions [DM82, Mil78]. The type scheme derived by the algorithm is a principal typescheme. Every other type scheme of the same expression is a generic instance of the typescheme computed by the algorithm W . It can also be proved to be complete [DM82] in thesense that every derivable type scheme will be an instance of, that is { at least as speci�c as,the type scheme produced by the algorithm W .5.1.5 An e�cient type checking algorithmImplementations of type checking algorithms based directly on the theory illustrated in theprevious section turn out to be bottlenecks in many compilers. The reason is that it seemsnecessary to handle large environments in a way that is not e�cient. In this section however,it will be shown that it is possible to handle these environments in a quite e�cient way usinglevels2.Consider the tiny example language from section 5.1.1. Besides from a unique name eachtype variable is also associated with a let{level. The idea is that when type checking theexpression fn x ) expthen x is bound to a fresh type variable for which the level is set to current level. When typechecking the expression let val x = exp1 in exp2 endthe let{level is increased by one when checking the expression exp1 and then decreased again.Now, all the type variables in the type �1, that is inferred for exp1, which have an associatedlevel greater than the current level are to be quanti�ed. All type variables in the environmentwill have lower level; if a type variable has higher level it does not occur in the environmentand so it should be generalized. For this to work out correctly it is required that when a typevariable � is uni�ed with a type � then all the levels associated to the type variables for �together with the type variable �, are to be substituted with the lowest of these levels.Quanti�cation of a type variable is then done by setting the level of the type variable to -1,e.g. Type instantiation is done by taking a copy of the type where all generic type variables2The idea was presented by Lars Birkedal at The University of Copenhagen, DIKU and described in [R�92].The algorithm is implemented in the Caml Light system and in the ML Kit system version 1.x, x > 0.



5.2. THE TYPE CHECKER FOR MINIML 25occurring in the type are made fresh (get level equal to present let{level) and where non{generictype variables are \copies" of the type variables of the original type. It is assumed that typevariables are represented by references. In this way, when a type variable is uni�ed with a type,the type variable can be updated destructively.5.2 The type checker for MiniMlThe type checker for the Caml Light system is not su�cient to type check declarations ofStandard ML. A type checker for Standard ML should resolve overloading and also it shouldallow type variables to be associated with an equality attribute and an imperative attribute.In MiniMl however, the type checker of the Caml Light system is adopted, though it is notsound. The type checker of the Caml Light system is fast, the implementation is rather smalland it does reject most of the phrases that should be rejected by a Standard ML compiler.Because the type checker of MiniMl (Caml Light) is not sound it is possible to compile thefollowing sequence of declarations:fun f x =let val r = ref xin (fn () ) !r , fn k ) r := k)end;val (read , write) = f (fn x ) x );val = write (fn i ) i + 1);val what = read () true;It is necessary to know of the implementation to predict the result of the last declaration:val what = false : boolThe type of the equality operator of MiniMl is8 0a: 0a � 0a! booland not as described in the de�nition:8 00a: 00a � 00a! boolThis is simply becauseMiniMl does not have equality attributes associated with type variablesand for this reason it is possible to type check the following declaration:fun f () =let fun k = 0fun g = 1in k = gend;



26 CHAPTER 5. TYPE CHECKINGHowever, when applying the function f in the above example to a value of type unit, theequality function will raise the exception Invalid argument "equal: functional value".



Chapter 6
Dynamic Aspects of Mini ML
As mentioned in the introduction it is necessary to change the runtime system of the CamlLight system in order to obtain the behavior that is required of a Standard ML compiler. Theaspects that we will discuss here includes order of evaluation and correct implementations ofprimitives, such as div , mod and equality (\="). Some parts of this chapter requires knowledgeof the abstract machine of the Caml Light system. For information regarding this topic seechapter 10, [Ler90b] and [Ler93, chapter 12].6.1 Order of evaluationAt the point of writing, MiniMl evaluates expressions right to left since it builds on theabstract machine of the Caml Light system. This only shows by use of side e�ects. Theexpressionlet val a = ref 0fun f x y = !ain f (a := 1) (a := 2)end;evaluates toval it = 1 : intNot only function applications are evaluated this way; every expression is evaluated from rightto left. As an example the expressionlet val a = ref 0 27



28 CHAPTER 6. DYNAMIC ASPECTS OF MINI MLval b = (a := 1, a := 2)in !aend;evaluates toval it = 1 : intand hence shows that also tuples are evaluated from right to left. Similar experiments can bemade with lists and other datatypes.When choosing a right{to{left evaluation order, it is possible to evaluate multiple applica-tions very e�ciently [Ler90b, page 14]. When evaluating (M N1 : : : Nk), left to right it seemsnecessary to reduce M �rst, then A1 = (M N1), then N2, then A2 = (A1 N2), and so on untilAk = (Ak�1 Nk). Since A1 has to be computed before N2 and so on, it is necessary to buildthe closures A1; : : : ; Ak�1 during the evaluation process. When evaluating expressions right toleft the evaluation order for the above example becomes Nk; : : : ; N1;M;A1; : : : ; Ak hence thearguments N1; : : : ; Nk are available when starting to reduce inside M .The evaluation order of MiniMl can be changed in two ways. One way is to change thelambda-code to Zam-code translation, such that closures are built for every argument (seeexample above) and such that elements in e.g. tuples are pushed on the stack in the reverseorder. If the system is changed in this way the e�cient application mechanism of the Zinc{machine will not be used.The other way of changing the MiniMl system such that the evaluation order becomesleft to right uses the e�cient application mechanism of the Caml Light system. This however,requires a change in the abstract machine. The idea is to introduce an instruction, say Re-verseArgs (k), in the abstract machine that \reverses" the accumulator and the k top entrieson the argument stack1:Code Accu Env. Arg. stack Return stackReverseArgs(k);c a e v0 : : : vk�1:s rc vk�1 e vk�2 : : : v0:a:s rA multiple application is compiled in the Caml Light system as follows:C [[(M N1 : : : Nk)]] � Pushmark ; C [[Nk]] ; Push; : : : ; C [[N1]] ; Push; C [[M ]] ; ApplyTo obtain left{to{right evaluation the following translation scheme could be used instead:C [[(M N1 : : : Nk)]] � Pushmark ; C [[M ]] ; Push; C [[N1]] ;1This idea is due to Sergei Romanenko, University of Moscow.



6.2. CORRECT IMPLEMENTATION OF PRIMITIVES 29Push; : : : ; C [[Nk]] ; ReverseArgs(k); ApplyThis translation scheme is correct even if functions are not fully applied. To see this, observethat the state of a machine using the right-to-left evaluation scheme and a machine using theleft-to-right evaluation scheme (all else equal) is the same prior to the Apply instruction. Hencebeside from evaluating the function and the arguments in di�erent order the two schemes behavethe same.Still elements in e.g. tuples must be pushed on the stack in reverse order for all expressionsto evaluate from left to right.6.2 Correct implementation of primitivesNot all primitives of the Caml Light system can directly be used in the MiniMl system. Inorder for the dynamic semantics of the primitives inMiniMl to match the dynamic semanticsof the primitives of The De�nition of Standard ML [MTH90, appendix D], it is necessary tochange either corresponding primitive operations of the abstract machine, or correspondingprimitive functions residing in the Caml Light library. The primitive functions that residesin the Caml Light library can be split into two categories. Some functions are written in theCaml Light language and some are actually written in C using the facilities of Caml Light tolink C object code to Caml Light code [Ler93, chapter 12]. Functions that need to be e�cientare either C functions or direct operations on the stack and the accumulator in the abstractmachine.Most of the primitives of MiniMl behaves semantically correct with respect to The De�-nition, though some of the primitives do not raise the correct exceptions when required. Theabstract machine (the Zinc machine) does not check for overow on operations on integersthough this test could be integrated in the abstract machine. The abstract machine representsan integer i as the value 2 � i + 1, hence an operation resulting in overow would cause thecarry bit to be set2.6.2.1 Changing the semantics of equalityThe Caml Light system operates with two di�erent notions of equality. One that checks forstructural equality and one that checks for physical (referential) equality. In Standard MLthere is only one notion of equality. The equality test in Standard ML is basically a structuralequality test, though no structural equality is done on references. Equality on two referencesreturns true only if the references are identical; otherwise equality on two references returnsfalse. In this way no equality test will result in an in�nite loop since every loop in a StandardML data structure either goes through a reference (ref) or a function. The static semantics ofStandard ML requires that no data structure containing functions can be checked for equality.In MiniMl however, this is not checked statically but dynamically. That is, an exception2This representation is also used in the Standard ML of New Jersey system [App89, page 5], and this systemchecks for overow.



30 CHAPTER 6. DYNAMIC ASPECTS OF MINI MLis raised if a data structure containing a function is checked for equality with another datastructure.To incorporate the notion of equality of Standard ML, with respect to references intoMini-Ml it is necessary to make it possible for the runtime system to identify reference cells. This isdone by boxing all reference values with a special ref -tag just as closures, strings and doubleshave their own tags. The data in a ref -block is then one word denoting a value.One word One wordref {tag GC size = 1 valueOne blockThe equality function of Caml Light is written in C and it is relatively easy to change thisfunction to match The De�nition of Standard ML3. When the equality function compares tworef -blocks the function returns true if the references (pointers) are identical, otherwise false.In this way no in�nite loops will occur when using the equal predicate.

3It is of course necessary to recompile the abstract machine and bootstrap the system for the change toappear.



Chapter 7
Using the System
MiniMl is an implementation of a subset of the core Standard ML language that is de�nedin The De�nition of Standard ML [MTH90]. The language is built on the basis of anotherfunctional language Caml Light, that is developed at INRIA in France1. Actually MiniMl isa modi�ed version of the Caml Light system, written in Caml Light.To incorporate many of those features that Standard ML provides, some parts of the MLKit system, that is a Standard ML written in Standard ML, was translated into Caml Lightand integrated with the already existing code. The parser and lexer are translations of codefrom the ML Kit system.Due to the module system of Caml Light the system supports separate compilation ofmodules. The module system of Standard ML does not direct provide such a feature though itgives the user other features such as better reusability of code.The compiler translates code into binary code that is highly portable. The binary code isexecuted on an abstract machine, the Zinc machine. The abstract machine itself is written inC and can, for this reason, be transported to many platforms.The language MiniMl is naturally, as Standard ML, split into a core language and amodule language.7.1 The core languageThe core language follows the de�nition of core Standard ML closely. There are however, someconstructs of core Standard ML that are not supported in MiniMl . These constructs willnot be mentioned in the grammar (see section 7.1.4).1The Caml Light system is copyright c1989, 1990, 1991, 1992, 1993 INRIA which holds all ownership rightsto the Caml Light system. (See [Ler93, page 5] for more information regarding this topic.)
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32 CHAPTER 7. USING THE SYSTEM7.1.1 Reserved wordsThe reserved words of core MiniMl are the same as for core Standard ML [MTH90, page 3]though some of the words has no meaning inMiniMl . There is one additional reserved wordin core MiniMl that is not included in The De�nition, and that is close. Only \=" may beused as an identi�er. The reserved words of core MiniMl are given below.abstype and andalso as case close dodatatype else end exception fn fun handleif in in�x in�xr let local non�xof op open orelse raise rec thentype val with withtype while ( )[ ] f g ; : ;::: j = => � > #7.1.2 ConstantsMiniMl supports, as Standard ML, the following tree kinds of special constants (scon).� integer : a non{empty sequence of digits, possibly preceded by a negation symbol (~).Examples: 23 ~340.� real : an integer followed by a point (.) and an integer or an integer followed by anexponent or an integer followed by a point (.) and an integer and an exponent. Theexponent must consist of an exponent symbol E and an integer. Examples: 4.243.2E32 ~38E~2.� string : a sequence of printable characters, spaces or escape sequences, enclosed in double{quotes ("). Escape sequences start with a backslash (n) and must be of one of the followingforms: nn Newline.nt Tab.n^c Control{c. c may be any character with number 64{95.nddd A character with ASCII number ddd(the number must be in the interval [0,255]).n" "nn nnf : : : f n This sequence is ignored, where f : : : f standsfor a sequence of spaces, tabs and newlines.7.1.3 Identi�ersThere are six di�erent classes of identi�ers. These are:



7.1. THE CORE LANGUAGE 33Class Description LongVar Value variables longCon Value constructors longExCon Exception constructors longTyVar Type variablesTyCon Type constructors longModId Module identi�erAs in [MTH90], var ranges over Var, con over Con and so on. In addition modid ranges overModId. For each class X marked \long" there is a class LongX of long identi�ers. If x rangesover X then longx ranges over LongX. Long identi�ers are de�ned as:longx ::= x identi�ermodid.x quali�ed identi�erThese long identi�ers creates a connection between the core and the modules.7.1.4 GrammarThe grammar for MiniMl is given in BNF{notation. The conventions are as in [MTH90].The derived forms [MTH90, appendix A] are included in the grammar2. The grammar for aprogram is [MTH90, page 63]:program ::= topdec ; hprogram i a programIn addition to the phrase classes given in [MTH90, page 7, �gure 2]MiniMl introduces a newphrase class TopDec. This is done to restrict datatype, exception and type declarations fromappearing inside let declarations.topdec ::= exception exbind exception declarationdatatype datbind datatype declarationtype typbind type declarationopen modid open declarationclose modid close declarationtopdec1 ; topdec2 sequential toplevel declarationdec declarationNotice that two topdec{declarations need to be separated by a semicolon. In core Standard MLno declarations need to be separated by semicolons.The grammar for a standard declaration follows.2The full grammar for core Standard ML is given in [MTH90, appendix B]



34 CHAPTER 7. USING THE SYSTEMdec ::= val valbind value declarationval rec valbind recursive value declarationfun fvalbind function declarationempty declarationdec1h; idec2 sequential declarationin�x hdi id1 � � � idn in�x (L) directive, n � 1in�xr hdi id1 � � � idn in�x (R) directive, n � 1non�x id1 � � � idn non�x directive, n � 1valbind ::= pat = exp hand valbindifvalbind ::= hopi var atpat 11 � � � atpat 1n h: tyi = exp1 m;n � 1j hopi var atpat 21 � � � atpat 2n h: tyi = exp2 See note belowj � � � � � �j hopi var atpatm1 � � � atpatmn h: tyi = expmhand fvalbinditypbind ::= tyvarseq tycon = ty hand typbindidatbind ::= tyvarseq tycon = conbind hand datbindiconbind ::= hopi con hof tyi hj conbindiexbind ::= hopi excon hof tyi hand exbindihopi excon = hopi longexcon hand exbindiIn the fvalbind{form, if var has in�x status then either op must be present or var must bein�xed, that is, at the start of any clause the phrase \op var (atpat ; atpat' ) � � �" may bereplaced with \(atpat var atpat' ) � � �", and the parentheses may be dropped if \:ty" or \="follows immediately.In the in�x{declaration and the in�xr{declaration, if the optional d is not present, thepriority is set to default, that is zero [MTH90, page 6].The grammar for an expression follows.exp ::= infexpexp : ty typed (L)exp1 andalso exp2 conjunctionexp1 orelse exp2 disjunctionexp handle match handle exceptionraise exp raise exceptionif exp1 then exp2 else exp3 conditionalwhile exp1 do exp2 iterationcase exp of match case analysisfn matchinfexp ::= appexpinfexp1 id infexp2 in�x expression



7.1. THE CORE LANGUAGE 35appexp ::= atexpappexp atexp application expressionatexp ::= scon special constanthopi longvar value variablehopi longcon value constructorhopi longexcon exception constructor() 0{tuple(exp1 ; � � � ; expn) n{tuple, n � 2[exp1 ; � � � ; expn] list, n � 0(exp1 ; � � � ; expn) sequence, n � 2let dec in exp1 ; � � � ; expn end local declaration( exp )match ::= mrule hj matchimrule ::= pat => expThe match{expression extends as far right as possible, hence parentheses may be needed innested matches (e.g. a case inside a case{branch).A pattern has the following grammar.atpat ::= wild-cardscon special constanthopi var variablehopi longcon constructorhopi longexcon exception constructor() 0{tuple(pat1 ; � � � ; patn) n{tuple, n � 2[pat1 ; � � � ; patn] list, n � 0( pat )pat ::= atpat atomichopi longcon atpat constructorhopi longexcon atpat exception constructorpat1 con pat2 in�xed value constructionpat1 excon pat2 in�xed exception constructionpat : ty typedhopi var h: tyi as pat layeredThe grammar for type expressions are as follows.ty ::= tyvar type variabletyseq longtycon type constructionty1 � � � � � tyn tuple type, n � 2ty -> ty0 function type expression( ty )



36 CHAPTER 7. USING THE SYSTEM7.1.5 Phrases of Standard ML not included in MiniMlWhen comparing [MTH90, appendix B] with the above grammar there are a few di�erences.First of all the above grammar includes the production topdec. MiniMl does not supporttopdec declarations inside let expressions hence it is not possible to nest declarations of types,datatypes or exceptions. Neither doesMiniMl support two sequential topdec declarations notseparated with a semicolon. Also records are not supported in MiniMl . Constructs suchas abstype{ and withtype{constructs are not supported either. Also, none of the built{inoperators are overloaded.The lack of these features is a result of not committing to the static semantics of StandardML. Most of the features could therefore be gained by integrating the type checker of the MLKit system in the MiniMl system.MiniMl evaluates expressions right to left and the exceptions Neg, Quot, Prod, Sumand Di� are not raised on overow of the result of arithmetic operations3. These topics arediscussed in chapter 6 and both have to do with the dynamic semantics of Standard ML.Streams are not supported in MiniMl , but could fairly easily be integrated in the systemwith use of the input/output primitives of the Caml Light system.7.2 The module systemThe module system of MiniMl is a C-like module system. The system is able to compiletwo kind of �les { .sml-�les (implementation �les) and .sig-�les (signature �les.) The signature�les roughly tell what to export from the implementation �les. It is not necessary to writesignature �les for every implementation �le. MiniMl compiles signature �les into .zi-�les andimplementation �les into .zo-�les. When MiniMl compiles an implementation �le it checks ifa compiled signature �le (.zi-�le) exists. If this is not the case MiniMl creates one itself.The grammar for an implementation �le simply follows the grammar for the core MiniMllanguage. The name of such �les have to end on \.sml". The grammar for a signature �le, onthe other hand, is a sequence of speci�cations separated by semicolons. The reserved words fora signature �le is a subset of the reserved words for the core MiniMl language. The grammarfor a signature �le follows.signature ::= spec ; signature speci�cationempty speci�cationspec ::= val valdesc value speci�cationtype typdesc type speci�cationdatatype datdesc datatype speci�cationexception excdesc exception speci�cation3The Standard ML of New Jersey system raises the exceptionOverow on overow of the result of arithmeticoperations. That is, the exceptions Neg, Quot, Prod, Sum and Di� are all equal to the exception Overow[Lab93a, page 13].



7.3. PREDEFINED IDENTIFIERS AND LIBRARIES 37valdesc ::= id : ty hand valdesci value descriptionid : ty = d string hand valdesci C function descriptiontypdesc ::= tyvarseq tycon hand typdesci typetyvarseq tycon = ty hand typdesci type abbreviationdatdesc ::= tyvarseq tycon = condesc hand typdesci datatypecondesc ::= hopi id hof tyi hj condesci constructorexcdesc ::= id hof tyi hand excdesci exceptionThe keyword op is allowed but has no e�ect in a condesc or an excdesc. The De�nition requiresthat op should be present when the identi�er has in�x status [MTH90, page 6]. For a �le tobe a signature �le, the name of the �le must end with \.sig".7.2.1 Intersections with the core languageIn MiniMl it is possible to access declarations in other �les, which must have been compiled,in two ways:� By use of the open and close (toplevel) declarations.� By use of long identi�ers.The open-declaration takes as argument the name of the �le (without extension) to be opened.The open declaration does not overwrite declarations already declared in a module (�le).7.3 Prede�ned identi�ers and librariesPrede�ned identi�ers in MiniMl constitute a subset of the prede�ned identi�ers of StandardML. The initial static basis describes the type and the in�x status for each identi�er [MTH90,appendix C], whereas the initial dynamic basis describes the dynamic semantics for each iden-ti�er [MTH90, appendix D]. The lack of overloaded operators makes it necessary to introducesome new names for some of the identi�ers involved. In general all identi�ers, that have to dowith reals and for which there is a counterpart involving integers, are preceded by a %{sign.There is only one exception from this rule. The MiniMl function abs has type int ! intand the MiniMl function real abs, that has the same meaning as the identi�er abs in TheDe�nition [MTH90, page 75], has type real ! real .The initial static basis contains the following types:bool int real string list ref exn unit



38 CHAPTER 7. USING THE SYSTEMThe basic value constructors are the identi�ers:true false nil ref ::The basic exception constructors are:Chr Div Interupt Mod Ord Match failure Invalid argumentNotice that there are no exception constructors for overow of the result of arithmetic opera-tions.The following table shows information about each non�x identi�er in the initial static basis.var 7! � var 7! �map 7! 8'a 'b.('a!'b) ! rev 7! 8'a. 'a list ! 'a list'a list ! 'b list not 7! bool ! bool� 7! int ! int %� 7! real ! realabs 7! int ! int abs real 7! real ! realoor 7! real ! int real 7! int ! realsqrt 7! real ! real sin 7! real ! realcos 7! real ! real arctan 7! real ! realexp 7! real ! real ln 7! real ! realsize 7! string ! int chr 7! int ! stringord 7! string ! int explode 7! string ! string listimplode 7! string list ! string ! 7! 8'a. 'a ref ! 'aref 7! 8'a. 'a ! 'a ref true 7! boolfalse 7! bool nil 7! 8'a. 'a listNotice the type of ref . In The De�nition ref is given the type 8 ' a. ' a ! ' a ref, where ' a isa weak type variable [MTH90, page 75].The table below contains the type and the in�x precedence of each in�xed identi�er in theinitial static basis. All in�xed operators in the initial static basis associates to the left except:: and @ that associate to the right4.var 7! � var 7! �Precedence 7:= 7! real � real ! real div 7! int � int ! intmod 7! int � int ! int � 7! int � int ! int%� 7! real � real ! realPrecedence 6:+ 7! int � int ! int %+ 7! real � real ! real� 7! int � int ! int %� 7! real � real ! real^ 7! string � string ! string4According to The De�nition [MTH90, appendix D] @ should associate to the left. Letting @ associate tothe right however, makes multiple appendices more e�cient. Apart from the order of evaluation, the result isexactly the same whether it associates to the left or to the right.



7.4. THE COMMANDS 39Precedence 5::: 7! 8 'a. 'a � 'a list ! 'a list @ 7! 8 'a. 'a list� 'a list ! 'a listPrecedence 4:= 7! 8 'a. 'a � 'a ! bool <> 7! 8 'a. 'a � 'a ! bool< 7! int � int ! bool %< 7! real � real ! bool> 7! int � int ! bool %> 7! real � real ! bool<= 7! int � int ! bool %<= 7! real � real ! bool>= 7! int � int ! bool %>= 7! real � real ! boolPrecedence 3::= 7! 8 'a. 'a ref � 'a ! unit o 7! 8 'a 'b 'c. ('b ! 'c)� ('a ! 'b) ! ('a ! 'c)7.4 The commandsThe commands that can be executed from the terminal prompt are the following5:ml Interactive session.mlc Batch compiler and linker.mlrun Execution of binary code (.zo{/.zi{�les.)mllibr The librarian.The ml command starts an interactive session in which the user can write declarations to beevaluated (see the grammar above.) A topdec declaration is evaluated by the system by enteringthe topdec declaration followed by a semicolon and a return [MTH90, page 63].7.5 Interfacing with CIt is possible to specify a C function in a signature �le in MiniMl . For documentation onhow to implement the corresponding C functions, see [Ler93, chapter 12].

5The commands are similar to the commands camllight, camlc, camlrun and camllibr of the Caml Light system.



40 CHAPTER 7. USING THE SYSTEM



Part II
A New Back-end for the ML KitSystem

41





Chapter 8
The ML Kit System as Point ofDeparture
The ML Kit system is a Standard ML implementation written in Standard ML [BRTT93]. TheML Kit system version 1.0 provides two di�erent kinds of back-ends. There is an interpreterthat almost directly corresponds to the sections in The De�nition [MTH90, section 4 and 5]describing the dynamic semantics of the core language and the dynamic semantics of the modulelanguage. The ML Kit system also includes a compiler. The compiler translates abstract syntaxtrees of the core language into constructs of an extended typed lambda language that can beinterpreted by the lambda language interpreter. As opposed to the interpreter the compiler(and lambda language interpreter) does not include the module language.In this part of the report we describe how a new back-end for the ML Kit system isconstructed1. We show how programs of the typed lambda language of the ML Kit systemare compiled into relatively small sequences of byte code that can be executed on an abstractmachine.The ML Kit system is very modular. We describe in chapter 9 how the necessary steps ofcompilation and execution are integrated with the existing ML Kit system.The new back-end of the ML Kit system generates code for an abstract machine. Thismachine is a modi�ed version of the Zinc abstract machine that is a part of the Caml Lightsystem. The abstract machine is described in chapter 10. We describe the representation ofvalues in memory, the changes that have been necessary, how it integrates with the ML Kitsystem and its limitations.The translation of the typed lambda language of the ML Kit system into sequential bytecode is not done in one pass. Several passes are needed (the compilation by transformationparadigm). The lambda language of the ML Kit system is a typed lambda language based onunique names. First we show how this lambda language is translated into a simpler untypedlambda language based on de Bruijn indexes (chapter 11). We then show how this simplelambda language is translated into sequential code (chapter 12) and �nally how this sequentialcode is translated into byte code that can be executed on the abstract machine (chapter 13).1The version of the ML Kit system that has been used is the 1.0 version with a few extensions (as of April6, 1994). The lambda language is in this version a typed language and core elaboration is more e�cient.43



44 CHAPTER 8. THE ML KIT SYSTEM AS POINT OF DEPARTUREValue printing is also naturally done by the abstract machine since the data structures to beprinted are only visible to the abstract machine. We show how code for value printing, suitablefor the abstract machine, is generated for each value to be printed (chapter 14).As mentioned above the compiler of the ML Kit system does not support the modulelanguage at the time of writing. We discuss what changes are needed in order to compilephrases of the Standard ML module language into the typed lambda language of the ML Kitsystem, and how these constructs can be translated into sequential byte code (chapter 15).



Chapter 9
Structure of the Implementation
To understand how this new back end to the ML Kit system is structured it is necessary tounderstand how the ML Kit system itself is structured. The ML Kit system is described indetails in [BRTT93], though the version that we work with is somewhat newer. Core elaborationhas been optimized and the compiler compiles the abstract syntax tree into a typed lambdalanguage instead of the untyped lambda language shown in [BRTT93, �gure 6.6].The ML Kit system is highly modular (functorized) which makes it possible to exchangeparts of the Standard ML compiler with new parts without too many problems.9.1 Compilation and evaluationOne part of the ML Kit system that we change is the evaluation part. It interacts with the restof the system through the signature EVALTOPDEC.signature EVALTOPDEC =sigtype topdectype DynamicBasistype Packval RE RAISE : Pack ! unitexception UNCAUGHT of Packval pr Pack : Pack ! stringval eval : DynamicBasis � topdec ! DynamicBasisval FAIL USE : unit ! unittype StringTreeval layoutDynamicBasis: DynamicBasis ! StringTreeendThe function eval takes a dynamic basis and a top level declaration as arguments, evaluates thetop level declaration and returns a dynamic basis (additions to the original dynamic basis).45



46 CHAPTER 9. STRUCTURE OF THE IMPLEMENTATIONIf evaluation causes an uncaught exception the exception UNCAUGHT (p) is raised. Thisexception is then caught by the top level loop. A dynamic basis is a collection of environmentsincluding a dynamic environment and a tag environment (see below).The modi�ed functor CompileAndRun returns a structure that matches the signature EVAL-TOPDEC. It binds together all steps of compilation and the running step. Apart from somebasic utility structures it takes as arguments structures that include functions for each step ofthe compilation together with a structure that includes a function for running byte code. Thefollowing steps are applied.1. Compilation of an abstract syntax tree (of type topdec) into a typed lambda program.2. Optimization of the typed lambda program.3. Translation of the typed lambda language into a lambda language based on de Bruijnindexes.4. Compilation of the lambda language based on de Bruijn indexes into sequential code(Zam code).5. Generation of byte code (Zinc code) from sequential code (Zam code).6. Running the byte code (Zinc code).The �rst and second steps have not been changed and will not be described. A structure thatimplements the third step should match the signature TRANSLATE KIT LAMBDA.signature TRANSLATE KIT LAMBDA =sigtype DEnvand TEnvand LambdaPgmand dbLambdaPgmval lambda de bruijn : DEnv � TEnv � LambdaPgm !dbLambdaPgm � TEnvendThe function lambda de bruijn takes as arguments a dynamic environment, a tag environmentand a typed lambda program. As a result it returns a lambda program based on de Bruijnindexes and a new tag environment (updates to the original tag environment). The tag en-vironment is an environment mapping constructor names to tags and type names to lists ofconstructor names. The dynamic environment maps lambda variables and long exception con-structors to global variables (indexes to the global store). These environments are both neededfor construction of the lambda program based on de Bruijn indexes. See chapter 11 for adetailed description of this step.A structure that implements the step of compilation of the lambda language based on deBruijn indexes into sequential code should match the signature COMPILE LAMBDA.



9.1. COMPILATION AND EVALUATION 47signature COMPILE LAMBDA =sigtype ZamCodeand dbLambdaPgmand DEnvand lvarand longexconand arityval lambda to zam : (DEnv � ((lvar � arity) list) �(longexcon list) � dbLambdaPgm) !ZamCode � DEnvendThe function lambda to zam takes as arguments a dynamic environment, lists of lambda vari-ables and long exception constructors (those that should be visible at top level1, and hence codeshould be generated to store these values in the global store) and a lambda program based onde Bruijn indexes. As a result the function returns a Zam code structure and a new dynamicenvironment (updates to the original environment). This step is described in details in chapter12. A structure that implements the step of generating byte code (Zinc code) from the sequentialcode (Zam code) should match the signature EMIT ZAM.signature EMIT ZAM =sig type ZamCodeval emit zam code : ZamCode ! stringval set c primitives : string list ! unitendThe function emit zam code takes as argument a value of type ZamCode and returns a stringof byte code. There is also a function set c primitives used for initialization (see section 10.2).This step is described in details in chapter 13.A structure that implements the step of running the byte code (Zinc code) should matchthe signature RUN ZINC.signature RUN ZINC =sigval initialize : unit ! unitexception UNCAUGHT of stringval run zinc : string ! stringval terminate : unit ! unitend1For the long exception constructors only the exception names (references to strings) should be visible attop level, and hence only these are stored.



48 CHAPTER 9. STRUCTURE OF THE IMPLEMENTATIONThe function initialize is called when starting an ML Kit session. It starts a separate Unixprocess in which the abstract machine runs (see section 10.2). The function run zinc takes asargument a string of byte code and returns a string (characters printed on std out). If an ex-ception is raised and reaches top level, the exception UNCAUGHT (p) is raised. This exceptionis equal to the exception speci�ed in the signature EVALTOPDEC , hence the exception will becaught by the top level loop. There is also a function terminate that terminates the abstractmachine process.9.2 Value printingTo print a value stored in the abstract machine, it is necessary to generate Zam code for printinga value of the given type and then execute the code on the Zinc abstract machine.There is a structure ValPrint that provides a function print which takes as argument adynamic basis and the type of the value to print. It then generates Zam code to print the valueof the given type, translates the Zam code to byte code (Zinc code), executes the byte code onthe abstract machine, and receives the result as a string (see above). The structure ValPrintis built by the functor Evaluation that is a linking functor. The structure that the functorEvaluation builds then provides the print function in a substructure, and hence it can be usedin the top level loop. Value printing is described in details in chapter 14.



Chapter 10
The Abstract Machine
The abstract machine of the Caml Light system { the Zinc machine { is a byte code inter-preter which is fairly portable since it is written in C. The abstract machine is described in[Ler90b]. For the Zinc machine to work with the ML Kit system and to obtain the correctdynamic semantics of the Standard ML system, some modi�cations are needed. Also, not allthe machinery of the Zinc machine is necessary.The Zam (Zinc) abstract machine is basically a call by value Krivine machine [Ler90b,chapter 3], with extensions. It's state has an accumulator, an argument stack, an environment,a return stack, a global store and of course a pointer to some code. Byte-code that can bedirectly executed by the Zinc machine is called Zinc code (the actual abstract machine code, seeappendix C), in contrast to Zam code which is a sequence of symbolic instructions, where someof the instructions take arguments, such as labels, etc. The semantics of most of the instructionsof the Zam abstract machine is given in [Ler90b, chapter 3] and will not be discussed here.One important topic regarding the abstract machine is how to represent di�erent kinds ofdata in memory [Ler90b, chapter 4]. This is discussed in section 10.1.We show in section 10.2 how the abstract machine communicates with the ML Kit systemand in section 10.3 we discuss the limits of the Zinc abstract machine.10.1 Representation of data in memoryA lot of e�ciency can be gained by optimizing the representation of data in memory. Rep-resentations can be split into two sorts { unboxed representations such as an integer, a valuedenoting a constructor and so on, and boxed representations that is simply a pointer to a un-boxed representation of a value. If we were dealing with a language with no polymorphism,all values could simply be represented by their unboxed representation. This is not possiblewhen dealing with a language that provides polymorphism, since all values have to be of thesame size (in this case one word). A lot of work has been done regarding optimization of datarepresentations and it turns out that not all data need to be boxed for polymorphism to work[Ler90a, JL92, App89, AM87, App94]. 49



50 CHAPTER 10. THE ABSTRACT MACHINEThe Zinc abstract machine deallocates dead, unreachable data by use of a garbage collector1.When planning the representation of data the garbage collector has to be taken into account.The garbage collector for the Caml Light system is a copying garbage collector that simplyruns through (and copies) all valid data to a new address space while adjusting pointers. Whenall valid data have been copied the old address space can be de-allocated and the new addressspace used. In such garbage collectors it must be possible to distinguish between boxed andunboxed values, for the garbage collector to work.Some kinds of data need to be distinguishable at runtime (e.g. constructors of a datatypedeclaration). For this purpose tagged values are used. A tagged value is a number of contiguouswords in memory.One word N wordstag GC size �rst word : : : N'th wordOne blockThe �rst word is a header that includes a tag (eight bit), some information regarding garbagecollection (two bits) and the size (in words) of the data (22 bits). Tagged values with a tagless than the constant No scan tag (252) are garbage collected. That is, the following wordsare treated as (pointers to) values, possibly large data structures, and not as raw data such asfour characters.We now show how the di�erent kinds of data are represented in memory. Only integers areunboxed. Other values are pointers to allocated objects (tagged values).10.1.1 IntegersIntegers are unboxed. For the garbage collector to distinguish between integers and pointers toother data structures, an integer i is represented as the value 2 � i + 1, written:A [[i]] � 2 �c i +c 1Operators with a subscript C are C language operators. Boxed values (pointers to other datastructures) are even numbers, hence they have a low-order bit of zero. Simple arithmeticoperations are not hard with such a representation2:A [[� i]] � 2 �c A [[i]]A [[i + j]] � A [[i]] +c A [[j]] �c 11This has been thought of as being necessary, but recently it has been discovered that for a strict functionallanguage it is possible to generate code that dynamically allocates and de-allocates data. That is, allocation andde-allocation of data can be planned statically in a strict functional language [Tof94], hence garbage collectioncan be avoided.2The Standard ML of New Jersey implementation uses a similar representation [App89].



10.1. REPRESENTATION OF DATA IN MEMORY 51A [[i � j]] � A [[i]] �c A [[j]] +c 1A [[i � j]] � 1 +c ((A [[i]] �c 1) =c 2) �c (A [[j]] �c 1)Operations such as div and mod however, are not as simple. For these operations to workfor both positive and negative operands it is necessary to divide the operations into severalparts. This is because of the special semantics of these operators [MTH90, page 79]. Thefollowing scheme shows how div can be de�ned:A [[i div j]] � [Div] j = 0A [[i div j]] � 1 j 6= 0; i = 0A [[i div j]] � 2 �c ((A [[i]] �c 1) =c (A [[j]] �c 1)) +c 1i > 0; j > 0 _ i < 0; j < 0A [[i div j]] � 2 �c ((A [[i]] +c 1) =c (A [[j]] �c 1)) �c 1i < 0; j > 0A [[i div j]] � 2 �c ((A [[i]] �c 3) =c (A [[j]] �c 1)) �c 1i > 0; j < 0Overow can be checked for as done when using the simple representation; simply by check-ing the carry ag dynamically after every integer operation. The range of integers is lowerhowever (only 31 bits available for an integer on a machine with 32 bit words), than if a boxedrepresentation was chosen.10.1.2 RealsReals are tagged values with a real-tag that is greater than the constant No scan tag since therepresentation is non-structural. The size is two words, hence a real value takes up three wordsin memory: One word Two wordsreal{tag GC size = 2 data dataOne blockThe words following the header can be directly converted to a C-like double value, henceoverow can be checked easily.



52 CHAPTER 10. THE ABSTRACT MACHINE10.1.3 StringsStrings are tagged values. The string-tag need to be greater than the constant No scan tag,since the representation is non-structural, and the garbage collector should not interpret thestring characters as (pointers to) values. The size �eld is variable and denotes the length of thestring in words. The words following the header can be directly converted to a C string, sincethe string is null-terminated.10.1.4 ClosuresFunctional values are represented by closures which are pairs of code pointers and environments.Code is not allocated in the heap but statically allocated and hence not garbage collected. Ifcode were garbage collected as data in the heap it would be necessary for the garbage collectorto change return addresses on the return stack, and so the garbage collector would become verycomplex and slow [Ler90b, page 41].Closures are, as strings and reals, tagged values.One word Two wordsclosure{tag GC size = 2 code pointer environmentOne blockClosures are treated specially by the garbage collector, since the �rst word proceeding theheader should not be collected while the second word (a pointer to a vector) should.10.1.5 Records and tuplesRecords and tuples need not be distinguished at run-time, hence they have the same repre-sentation. Records are statically sorted with respect to the labels, and the labels are removedfrom the representation. In this way records and tuples can be represented as zero-tagged valueswhere size equals the number of �elds in the record (or tuple).10.1.6 Value constructorsThere are two kinds of value constructors. Either a constructor takes an argument or it takesno argument (constant constructor). Constant constructors are blocks with size zero, hencethey only consist of a header. Constructors that take an argument are blocks with size one.Constructors of a given datatype are associated with a unique tag (within the type), suchthat it is possible to di�er between di�erent constructors (of the same type) at run time. Hencethe maximal number of di�erent constructors in a given datatype is limited (currently 250).



10.2. INTEGRATING THE ML KIT SYSTEM AND THE ABSTRACT MACHINE 5310.1.7 ReferencesA reference value is basically a constructor ref that takes an argument. For the equality test towork correctly at run-time a reference value is given a special tag, such that a reference valuecan be identi�ed at run time.10.1.8 Exception namesA declaration of an exception causes an exception name to be introduced at runtime. Exceptionnames for constructors taking an argument and exception names for constant constructors havethe same representation, namely a reference to a string (the name of the exception constructor,used for printing).10.1.9 Exception constructorsAs for value constructors there are two kinds of exception constructors. All exception construc-tors are represented in memory as a tuple with two components. For constant constructorsthe �rst �eld of the tuple is an empty place holder, a value of type unit. For exception con-structors that take an argument the argument (a value) is stored in this �eld. The second�eld of the tuple is the exception name (a reference to a string that is simply the name of theexception constructor) [App92, page 49]. Representing exception constructors this way allowsus to implement the required generative behavior of exceptions.10.2 Integrating the ML Kit system and the abstractmachineCurrently the ML-Kit system and the abstract machine are two concurrent processes connectedby pipes: -�-�interaction The ML Kit system Unixpipes The Abstract MachineUser User
The abstract machine is written completely in C. It is a modi�ed version of the abstract machineof the Caml Light system in that some of the operations di�er and in that it operates di�erently.At an earlier stage the initialization code and the execution loop were written in Caml Light,hence this Caml Light program and the byte code generated in the ML Kit system were runon the exact same Zinc abstract machine. Since it is necessary to modify some of the basicoperations of the Zinc abstract machine to make it correct with respect to The De�nitionof Standard ML, the initialization process and the execution loop were rewritten in C and



54 CHAPTER 10. THE ABSTRACT MACHINEintegrated with the Zinc abstract machine. Modifying those operations while still using themachine to execute Caml Light programs would be very hard.When starting the abstract machine, an initialization phase begins. Besides from initializinginternal tables etc., the following steps occur:� Write all available C primitives to stdout separated by newlines and terminated by twonewlines. Note that the abstract machine's stdout is read by the ML Kit process.� Write the address of the �rst available global store to stdout (four bytes, most signi�cantbyte �rst).At this point the abstract machine goes into a loop. Each iteration follows the protocol:� Read the length of the byte code to execute (four bytes) from stdin.If this length equals zero then terminate.� Read the number of required global allocations (four bytes) from stdin.� Read the byte code from stdin.� Write result on stdout (the result is the printed ASCII representation of the result of theevaluation).� Write a null character on stdout.� If an exception is raised and not caught by a handler, the name is written to stdout.� Write a null character on stdout.The above protocol has the advantage of being simple, but also has some major disadvan-tages, as we shall see in chapter 12, since it takes an unacceptable amount of code to introducestring and real constants in the abstract machine. To minimize the size of the code used tointroduce string and real constants these constants should be statically allocated and bound toglobal variables before execution of the byte code. This optimization could easily be adoptedin the abstract machine. It would be necessary however, to extend the protocol.10.3 Limitations of the Zinc abstract machineThere are a few limitations to what can be done when using the Zinc abstract machine ofthe Caml Light system. Some of these limitations are due to the way data are represented inmemory, and other are caused by the way the Zinc abstract machine is built. It is importanthowever, that all these limitations of the representation of data and of the Zinc abstract machinecan be eliminated.The way constructors are represented in memory only allows 250 constructors of a singledatatype. This problem however is not severe since only very few (in practice none) programs



10.3. LIMITATIONS OF THE ZINC ABSTRACT MACHINE 55have datatype declarations with more than 250 constructors. If it at some point becomes aproblem (perhaps because of code generators) another representation of constructors could bechosen. This choice might cause a lack in performance but the change could easily be workedout.The number of global variables in the abstract machine is limited to 216. Only values thatmust be visible on top level are stored in the global store, hence the limitation will causeno problems even for compilation and execution of very large programs (e.g. the ML Kitsystem itself). If however, it shows that the limit causes problems it would be relatively easyto extend the limit. Only two instructions (GETGLOBAL and SETGLOBAL) of the Zincabstract machine need to be changed.Jumps in the Zinc code are relative signed jumps. These jumps are limited to �215 bytesin the code (small jumps). This limitation may cause problems when compiling and executinglarge programs. To extend this limit, in an easy way, all branch instructions of the Zinc abstractmachine could be extended to take arguments of four bytes (long jumps). It may be possibleto allow for both small and long jumps though it requires that the back-patching functions areextended (rewritten).Blocks in the Zinc abstract machine are limited to 256 �elds (0{255). This limit is easilyextended by introduction of three new Zinc instructions; one instruction that sets the n'th �eldof a block for n > 255, one that extracts the n'th �eld of a block for n > 255, and one thatbuilds a block of size i; i > 256 from the value in the accumulator and the i � 1 elements onthe argument stack.
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Chapter 11
A Lambda Language Based on deBruijn Indexes
The ML Kit system translates all phrases of core Standard ML into a typed lambda languagefor which all variables are named. The abstract machine requires sequential code. To translatethe typed lambda language into sequential code we �rst show how the typed lambda languagecan be translated into a simpler lambda language using de Bruijn indexes as variables.At this step it is also appropriate to calculate the size of each subexpression in the bind-ings in a �x -expression. This can be done using the type information, included in the typedlambda calculus. If we did not calculate these sizes at this step we would have to include typeinformation in the target language in order to resolve the sizes later. The size is the number ofmachine words needed to represent the value of the expression at runtime.During this translation phase, constructor tags are deduced from the type information givenin the typed lambda language. These tags are then introduced in the lambda language basedon de Bruijn indexes.11.1 The source languageThe source language, which is given below, is the typed lambda language of the ML Kit system1.datatype LambdaPgm = PGM of datbinds � LambdaExpand datbinds = DATBINDS of(tyvar list � TyName � (con � Type Option) list) list listand LambdaExp =VAR of flvar : lvar , instances : Type listgj INTEGER of intj STRING of stringj REAL of real1The lambda language is the lambda language of ML Kit version 1.0 [BRTT93, page 74], but modi�ed byLars Birkedal and Mads Tofte to be a typed language.57



58 CHAPTER 11. A LAMBDA LANGUAGE BASED ON DE BRUIJN INDEXESj FN of fbound lvar : flvar : lvar ,tyvars: tyvar list ,Type: Typeg,body : LambdaExpgj LET of fbound lvar : flvar : lvar ,tyvars: tyvar list ,Type: Typeg,bind : LambdaExp, scope: LambdaExpgj FIX of fbound lvars : flvar : lvar ,tyvars: tyvar list ,Type: Typeg list ,binds : LambdaExp list , scope : LambdaExpgj APP of LambdaExp � LambdaExpj EXCEPTION of excon � Type Option � LambdaExpj RAISE of LambdaExpj HANDLE of LambdaExp � LambdaExpj SWITCH I of int Switchj SWITCH S of string Switchj SWITCH R of real Switchj SWITCH C of longcon Switchj SWITCH E of longexcon Switchj PRIM of Type prim � LambdaExp listand 'a Switch = SWITCH of LambdaExp �('a � LambdaExp) list � LambdaExp OptionThe type datbinds is a list of groups of mutually recursive datatype bindings while the typeslongcon and longexcon are the types for a long constructor and a long exception constructor, re-spectively. The type lvar must be an equality type and the type primitive includes constructorsfor construction and de-construction of records, constructors, and exceptions, together with thepervasive functions of Standard ML. Some of these constructs are represented in the following(not complete) datatype:datatype 'Type prim =CONprim of flongcon : longcon, instances : 'Type listgj DECONprim of flongcon : longcon, instances : 'Type listg...j PLUS INTprim...j EXCONprim of longexconj DEEXCONprim of longexconj RECORDprimj SELECTprim of intThe type tyvar is the type of a type variable and the type Type denotes the type of an expressionor a lambda variable (lvar):



11.2. THE TARGET LANGUAGE 59datatype Type =TYVARtype of tyvarj ARROWtype of Type � Typej CONStype of Type list � TyNamej RECORDtype of Type listThe type TyName is the type of the name of a declared type.11.2 The target languageThe target language is very similar to the source language. It is a simple untyped lambdalanguage and instead of lvars variables are either de Bruijn indexes (see e.g. [Ses91, page 22])or indexes to the global store, called gvars. The reason for having two kinds of variables is thatStandard ML is an interactive language; it should be possible to access values (and exceptions)declared on top-level, earlier in an ML-session.datatype dbLambdaExp =dbVAR of intj dbGLOBAL of gvarj dbINTEGER of intj dbSTRING of stringj dbREAL of realj dbFN of dbLambdaExpj dbLET of dbLambdaExp � dbLambdaExpj dbFIX of (dbLambdaExp � int) list � dbLambdaExpj dbAPPS of dbLambdaExp � dbLambdaExp listj dbEXCEPTION of excon � dbLambdaExpj dbRAISE of dbLambdaExpj dbHANDLE of dbLambdaExp � dbLambdaExpj dbSWITCH I of int dbSwitchj dbSWITCH S of string dbSwitchj dbSWITCH R of real dbSwitchj dbSWITCH C of int dbSwitchj dbSTATICFAILj dbPRIM of db prim � dbLambdaExp listand 'a dbSwitch = dbSWITCH of dbLambdaExp �('a � dbLambdaExp) list � dbLambdaExp OptionThe type gvar is basically an address of a variable in the global store. The type excon is thetype of an exception constructor and the type db prim is a datatype denoting di�erent kinds ofprimitives. A subset of the primitives (corresponding to those shown for the source language)for the target language follows:datatype db prim =dbCONprim of int



60 CHAPTER 11. A LAMBDA LANGUAGE BASED ON DE BRUIJN INDEXESj dbDECONprim...j dbPLUS INTprim...j dbEXCONprim of intj dbGLOBALEXCONprim of gvarj dbDEEXCONprimj dbRECORDprimj dbSELECTprim of intAs for variables exception constructors are divided into two kinds. Exception constructorsdenoted as dbEXCONprim are local exception constructors whereas exception constructorsdenoted as dbGLOBALEXCONprim are declared on top-level earlier in an ML-session, andhence global.11.3 The T translation schemeIn the translation a compile time environment ce is needed to translate lambda variables (LV )and exception constructors (EXC ) into de Bruijn indexes. The ce environment must be passedto each of the mutually de�ned functions in the translation process.There is also need for another environment, the de environment. This environment however,can be global to the mutually de�ned compilation functions, since it is not altered during thetranslation process. The environment de is the dynamic environment and it includes only valuesand exceptions, previously declared on top level. This environment maps lambda variables(lvars) and long exception constructors (longexcons) to gvars (really integers) that representslocations (addresses) in the global store. If there were no such dynamic environment it wouldnot be possible to access variables declared on top-level earlier in an ML-session. To look up anaddress in the dynamic environment, given a lambda variable or a long exception constructorthe two lookup-functions lookup gvar from lvar and lookup gvar from longexcon are given.Most of the primitives are translated trivially. That is, the representation is the same inboth the typed lambda language and the lambda language based on de Bruijn indexes. In thefollowing translation scheme most of the trivially translated primitives are not included. Notehowever, that it is the job of one of these trivially translated primitives to store a variable inthe global store.The translation scheme, T can now be given. There are two di�erent schemes for variables.T [[VARflvar = xi ; : : :g]] cez }| {[d0 ; d1 ; : : : ; di�1 ;LV xi ; : : : ; dn�1 ] �dbVAR i xi 62 dom(de)T [[VARflvar = x ; : : :g]] ce �



11.3. THE T TRANSLATION SCHEME 61dbGLOBAL (lookup gvar from lvar x) x 2 dom(de); x 62 dom(ce)Constants are translated trivially as shown below.T [[INTEGER n]] ce � dbINTEGER nT [[STRING s]] ce � dbSTRING sT [[REAL r ]] ce � dbREAL rWhen translating the body of a lambda abstraction the environment ce must be extendedwith the lambda variable bound by the abstraction.T [[FN fbound lvar = flvar = lv ; : : :g; body = bodyg]] ce �dbFN ( T [[body ]] (LV lv :: ce) )The environment for the scope of a let-expression also need to be extended with the lambdavariable to be bound in the let-binding.T [[LETfbound lvar = flvar = lv ; : : :g; bind = bind ; scope = scopeg]] ce �dbLET ( T [[bind ]] ce; T [[scope]] (LV lv :: ce) )When translating a �x -expression we �rst create an environment including all variables tobe bound. Each subexpression will then be translated in this environment.T [[FIX fbound lvars = blvars; binds = binds; scope = scopeg]] ce �let val ce' = (map (fn flvar=lvar , : : :g ) LV lvar) blvars) @ ceval types = map (fn fType=Type, : : :g ) Type) blvarsfun makepairs [] = []j makepairs (b::bs) (t ::ts) = (size of type t , T [[b]] ce')::makepairs bs tsj makepairs = raise Impossibleval pairlist = makepairs binds typesval s = T [[scope]] ce'in dbFIX (pairlist , s)endThe exception Impossible should not be raised since the list of bindings and the list of boundlambda variables have the same length by construction. The function size of type is de�nedbelow and it returns the number of machine words, needed to represent a value of the giventype at runtime.



62 CHAPTER 11. A LAMBDA LANGUAGE BASED ON DE BRUIJN INDEXESfun size of type TYVARtype = 1j size of type ARROWtype = 2j size of type CONStype = 1j size of type RECORDtype l = List .size lTranslation of an application is trivial.T [[APP(body ; arg)]] ce �dbAPP(T [[body ]] ce; T [[arg ]] ce)Translations of expressions involving exceptions follow.T [[EXCEPTION (excon; None; lexp)]] ce �dbEXCEPTION (excon; T [[lexp]] (EXC excon :: ce))T [[RAISE lexp]] ce � dbRAISE (T [[lexp]] ce)T [[HANDLE (lexp body ; lexp handle)]] ce �dbHANDLE (T [[lexp body ]] ce; T [[lexp handle]] (DUMMY :: ce))All switch expressions are basically translated the same way. As an example the translationscheme for a constructor switch is as follows.T [[SWITCH C (SWITCH (lexp; longcon lexp list ; opt))]] ce �let val tr lexp = T [[lexp]] ceval tr list = map (fn (longcon, l) )(get longcon tag longcon, T [[l ]] ce)) longcon lexp listval tr opt =case opt ofSome l ) Some (T [[l ]] ce)j None ) Nonein dbSWITCH C (dbSWITCH (tr lexp, tr list , tr opt))endThe function get longcon tag takes as argument a longcon and lookups a tag value (really aninteger) in the tag environment (see chapter 9).As mentioned earlier most of the translations of primitives are trivial. For some of theprimitives however, the translation schemes are stated below.



11.3. THE T TRANSLATION SCHEME 63T [[PRIM (CONprim; lexps)]] ce �dbPRIM (dbCONprim(get longcon tag longcon);map (fn lexp ) T [[lexp]] ce) lexps)T [[PRIM (DECONprim ; [lexp])]] ce �dbPRIM (dbDECONprim; [T [[lexp]] ce])The translation of an exception constructor is twofold. The �rst translation scheme is usedwhen an exception is declared on top level earlier in the ML-session. The second translationscheme is used when an exception is declared in a local scope. The reason for dividing exceptionconstructors into two cases is the same as for dividing variables into two cases. It should alsobe possible to access exception constructors, declared earlier in an ML-session.
T [[PRIM (EXCONprim longexcon; lexps)]] cez }| {[v0; v1; : : : ; vi�1;EXC xi; : : : ; vn�1] �dbPRIM (dbEXCONprim i ; map (fn lexp ) T [[lexp]] ce) lexps)xi = excon of longexcon longexcon; EXC xi 62 fv0; v1; : : : ; vi�1gT [[PRIM (EXCONprim longexcon; lexps)]] ce �dbPRIM (dbGLOBALEXCONprim(lookup gvar from longexcon longexcon);map (fn lexp ) T [[lexp]] ce) lexps)x = excon of longexcon longexcon;longexcon 2 dom(de); EXC x 62 dom(ce)The function excon of longexcon extracts the exception constructor from a long exceptionconstructor. If an exception constructor is in the domain of the ce environment the �rst schemeis chosen. This ensures that an exception constructor of a local exception declaration, withthe same name as the exception constructor for a global exception declaration will be visible.Also note that since exception constructors (excons) are not unique, as lambda variables inthe typed lambda language are, it is required that the lookup function of the ce environmentreturns the �rst instance of any matching exception constructor (the latest one introduced) ifany. This ensures that the correct exception constructor is extracted from the environment.Translations of the primitives for introduction of records and for selecting a sub-term of arecord are simple. T [[PRIM (RECORDprim; lexps)]] ce �dbPRIM (dbRECORDprim; map (fn lexp ) T [[lexp]] ce) lexps)



64 CHAPTER 11. A LAMBDA LANGUAGE BASED ON DE BRUIJN INDEXEST [[PRIM (SELECTprim n; [lexp])]] ce �dbPRIM (dbSELECTprim n; [T [[lexp]] ce])In the above translation schemes map is de�ned as usual and the compile time environmentce is represented as a list. The lookup function is given below.fun lookup ([], ) = raise Unbound lvarj lookup (y :: yr , x ) = if x = y then 0else 1 + lookup (yr , x )Representing the environment ce this way causes the indexes of all variables of the list tobe updated, as required, when adding a variable to the environment. Each entry in the ceenvironment is either a lambda variable (LV ), an exception constructor (EXC ) or a dummyvariable (DUMMY ):datatype ce entry =LV of lvarj EXC of exconj DUMMYTo improve e�ciency this transformation step can be integrated in the pass where thelambda language based on de Bruijn indexes is compiled into Zam instructions, but this hasnot been done for clarity reasons.



Chapter 12
Generating Sequential Code
In this chapter we show how the simple lambda language based on de Bruijn indexes is compiledinto sequential code. The syntax of the lambda language based on de Bruijn indexes waspresented in chapter 11. The syntax of the sequential code is a modi�cation of the syntax ofthe sequential code (Zam code) used in the Caml Light system.The sequential code is split into three parts. These are initial code, function code andbinding code. The binding code binds all variables that should be visible on top level to globalvariables. To generate the binding code however, it is necessary to know which variables shouldbe visible and where these variables should be stored. Generation of binding code is discussedin section 12.3. The reason for dividing function code and initial code is that \jumping aroundfunctions" can be avoided this way. Generation of initial code and function code is discussedin section 12.2.12.1 Syntax of the sequential codeAs mentioned above the sequential code is split into three parts each containing a list of Zaminstructions.datatype ZamCode = ZAMCODE of finit code : zam instruction list ,bind code : zam instruction list ,functions : zam instruction listgA Zam instruction follows the syntax below.datatype zam instruction =Kquote of struct constantj Kget global of gvar j Kset global of gvarj Kaccess of int j Kgrabj Kpush j Kpop j Kpushmarkj Klet j Kendlet of int 65



66 CHAPTER 12. GENERATING SEQUENTIAL CODEj Kapply j Ktermapplyj Kcheck signalsj Kreturn j Kclosure of intj Kletrec1 of intj Kmakeblock of constr tag � intj Kprim of primitivej Kpushtrap of int j Kpoptrapj Klabel of intj Kbranch of int j Kbranchif of int j Kbranchifnot of intj Kstrictbranchif of int j Kstrictbranchifnot of intj Ktest of bool test � intj Kbranchinterval of int � int � int � intj Kswitch of int Array .ArrayA structured constant (struct constant) is either a string constant, a real constant, an integerconstant or a constant block, and a gvar denotes an address in the global store. A constructortag (constr tag) is basically an integer denoting the runtime tag of a constructor (see chapter10).The (incomplete) syntax of the primitives (the type primitive) is given below.datatype primitive =Pdummy of intj Pupdate j Ptag of j Praisej Ptest of bool testj P�eld of int j Pset�eld of intj Pccall of string � intj Paddint j Pdivint...j Poatprim of oat primitiveand oat primitive =Poato�ntj Pnegoat j Paddoat j Psuboat j Pmuloat j Pdivoatand bool test =Peq test j Pnoteq testj Pint test of prim testj Poat test of prim testj Pstring test of prim testj Pnoteqtag test of constr tagA primitive test (prim test) has the following form.datatype prim test = PTeq j PTnoteq j PTlt j PTle j PTgt j PTgeAt the time of writing the complete syntax of the sequential code corresponds closely tothe syntax of the sequential code for the Caml Light system (Zam code). The link facility of



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 67the Caml Light system (see [Ler90b, chapter 6]) is not used in our implementation, hence somearguments of some of the Zam instructions (Zam instructions that have to do with global vari-ables) are simpli�ed. The syntax of the primitives could be arranged to �t with the pervasivesof Standard ML.12.2 Generation of initial code and function codeA lambda program is compiled into Zam code by traversal of the lambda program. Whencreating code for an executor (in contrast to creating code for an interpreter) [Han91], such asthe Zinc abstract machine, it is necessary to generate jumps in the sequential code.To compile the lambda program into sequential code the lambda program is attened recur-sively. Compilation of functions and default expressions in switch constructs is delayed untilthe remaining lambda program has been traversed, recursively. Strictly speaking, it is notnecessary to delay compilation of these lambda expressions until the whole lambda programhas been traversed, but it helps the compiler generating e�cient and small code since code for\jumping over" the code compiled for a function can be avoided1. Practically this procedureis done by use of a stack for holding delayed lambda expressions. Later, when the initial codehas been generated the lambda expressions on the stack are popped and compiled, until thestack is empty. During compilation of expressions popped from the stack, compilation of newlambda expressions may be delayed and hence pushed onto the stack.First we describe some basic functions that are needed for the compilation. We need to beable to generate a fresh label. This is done by the function new label :localval lab = ref 0in fun new label () =(lab := !lab + 1;!lab - 1)endThe stack mentioned above should be global to the compilation functions. It is simplyrepresented as a value of type (Lambda Exp � int) list ref and is initially a reference to theempty list. There is a function push exp that takes a pair of a lambda expression and a label(really an integer) as argument and returns a value of type unit . As a side e�ect the pair ispushed onto the stack. Similarly, there is a function pop exp that takes a value of type unit asargument and returns the top element of the stack (a pair of a lambda expression and a label)while removing this element from the stack. If the stack is empty the exception StackEmptywill be raised.To avoid generating code that after introducing a value in the accumulator immediatelyreplaces it by another, the following compilation function is introduced:1This technique is adopted from the Caml Light system.



68 CHAPTER 12. GENERATING SEQUENTIAL CODEfun into accu v C =case C of(Kquote :: ) ) Cj (Kget global :: ) ) Cj (Kaccess :: ) ) Cj (Kpushmark :: ) ) Cj ) v @ CBoth arguments of the above function must be lists of Zam instructions. The second argumentC is the continuation and the �rst argument v should be a list of instructions that introducesa value in the accumulator and besides from this has no side e�ects. This example shows howa continuation can be used for code optimization. We say that the accumulator is dead, at agiven point in the Zam code if it is overwritten before it is used. This optimization assures thatno value is stored in a dead accumulator. Code that introduces values in an accumulator thatis dead [ASU86, page 595] is eliminated from the code. The �rst three cases of optimization ofthe continuation C in the above function are easily veri�ed; the accumulator is overwritten bythe �rst instruction in the continuation.To understand that the last case of optimization of the continuation is safe, �rst see thata Kpushmark instruction will always (by construction) be followed by a Kapply instructionin the generated Zam code. In between these instructions are instructions that will introducevalues in the accumulator and on the stack (by Kpush instructions). The value that is inthe accumulator prior to execution of the Kpushmark instruction will not be used in betweenthe Kpushmark instruction and the Kapply instruction (it will actually be overwritten by codefollowing the Kpushmark instruction). Execution of the Kapply instruction causes a new valueto be introduced in the accumulator and hence an instruction with no side e�ects, introducinga value in the accumulator prior to the Kpushmark instruction will have no e�ect. That is, theaccumulator is dead if the continuation starts with a Kpushmark instruction, hence avoidingintroducing a value in the accumulator at this place in the Zam code is safe.The reason that this optimization works is that the value that is in the accumulator priorto execution of the Kpushmark instruction is not used in between the Kpushmark instructionand the Kapply instruction. If code sequences like: : :Kaccess 1 :: Kpushmark :: Kpush :: Kaccess 3 :: Kapply :: : : :could be generated by our compiler, then the optimization would be unsafe since the value thatis in the accumulator prior to execution of the Kpushmark instruction is used in between theKpushmark instruction and the Kapply instruction. Instead our compiler will generate codesequences like2:: : :Kpushmark :: Kaccess 1 :: Kpush :: Kaccess 3 :: Kapply :: : : :Note that this code sequence has the same meaning as the above code sequence.Whenever a branch is needed in the code, the following function from the Caml Lightcompiler is used to avoid a jump to a jump in the code.2There is one case where this is not the case. For compilation of a handler (see below) the accumulator isnot dead at the point in the code where the Kpushmark instruction resides since the accumulator is pushedonto the stack immediately after. This is not a problem since no optimization is done on the generated codefor a handler.



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 69fun make branch (C as (Kreturn :: )) = (Kreturn, C )j make branch (C as ((branch as (Kbranch )) :: )) = (branch, C )j make branch C =letval lbl = new label()in(Kbranch lbl , Klabel lbl :: C )endOther optimizations (e.g. optimization on function application) needs to check whether theconstruction being compiled is in tail position; it is if the continuation starts with a Kreturninstruction. For this purpose the following test is provided.fun is return (Kreturn :: ) = truej is return = falseWe now show how a lambda expression is compiled into Zam code. The compilation schemeis given by the C compilation function. It takes as arguments a lambda expression and acontinuation of Zam code (of type zam instruction list) and returns a list of Zam code.12.2.1 Variables and constantsA variable based on a de Bruijn index is compiled into code that accesses the value with deBruijn index i+ 1 in the environment and puts it into the accumulator.C [[dbVAR i]] C �into accu [Kaccess i ] CA global variable is compiled into code that puts the value corresponding to the gvar intothe accumulator. C [[dbGLOBAL gvar]] C �into accu [Kget global gvar ] CCompilation of an integer constant is also trivial.C [[dbINTEGER n]] C �into accu [Kquote(SCatom (ACint n))] CAt the time of writing, string and real constants are compiled in a very ine�cient way.At a later stage, string and real constants should be bound statically in the abstract machinebefore byte code is run. This is currently not possible since the compiler (ML Kit) and the Zincabstract machine run concurrently in di�erent Unix processes, communicating over two pipeson a simple protocol. It is possible however, to extend the protocol and hence obtain moree�cient code. The following function introduces a string in the accumulator of the abstractmachine.



70 CHAPTER 12. GENERATING SEQUENTIAL CODEfun comp string s C =let fun blit chars [] = []j blit chars (c::rest) n =[Kquote(SCatom(ACint c)), Kpush,Kquote(SCatom(ACint n)), Kpush,Kaccess 0, Kprim(Psetstringchar)] @(blit chars rest (n+1))val charlist = map (fn a ) ord a) (explode s)val len = List .size charlistin into accu (Kquote(SCatom(ACint len)) ::Kprim(Pccall("create string", 1)) ::Klet :: (blit chars charlist 0) @[Kaccess 0, Kendlet 1]) CendThe string is compiled into code that �rst allocates a string of the given size (create string) inthe abstract machine and then updates each character of the string with the correct value.The compilation functions for string constants and real constants then become trivial.C [[dbSTRING s]] C �comp string s CTo compile a real constant we �rst convert the real constant into a string, then changethe characters that need to be changed for the C primitive oat of string to work. We thengenerate code that introduces the string and calls the C primitive oat of string .C [[dbREAL r]] C �letval s = Real .string rval s1 = String .subst String .MatchCase "�" "-" sval s2 = String .subst String .MatchCase "E" "e" s1in comp string s2 (Kprim(Pccall("oat of string", 1)) :: C )endThe functions List.size, Real.string , String.subst and String.MatchCase are all from the Edin-burgh Library [Ber91].12.2.2 Function applicationAn application is compiled into code that �rst evaluates the argument, pushes it onto the stack,then evaluates the function and �nally applies the function to the argument. If the applicationis not in tail position, code is built that �rst pushes a mark on the stack and then proceeds as



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 71above. The mark insures (in our case) that the function is applied to only one argument. TheKpushmark instruction works together with the Kapply instruction and is originally from theCaml Light system where function application on this level could be curried.C [[dbAPP (body ; [arg])]] C �(case C of(Kreturn :: C ') )C [[arg]](Kpush :: (C [[body]] (Ktermapply :: C ')))j )Kpushmark :: (C [[arg]](Kpush :: (C [[body]] (Kapply :: C )))))If the application is in tail position (the continuation starts with a Kreturn instruction) thereis no need to push a closure onto the return stack and then immediately pop it o� the returnstack again. To implement this optimization the Zam instruction Ktermapply is provided. Incase of an application in tail position no mark should be pushed onto the argument stack sincethere will be no Kreturn instruction to pop it o� the argument stack again.12.2.3 Functions and let-bindingsA simple non-recursive function is compiled as follows.C [[dbFN body]] C �if is return C thenKgrab :: (C [[body]] C )elselet val lbl = new label ()in push exp (body , lbl);Kclosure lbl :: CendIf the abstraction is in tail position the more e�cient Kgrab instruction is used instead of theKclosure instruction (see [Ler90b, page 30]). The body of the function expression is compiledin-line instead of being pushed onto the stack of delayed lambda expressions (see below).The compilation scheme for a let-construct follows.C [[dbLET (bind ; scope)]] C �let val C1 = if is return C then Celse Kendlet 1 :: Cin C [[bind]] (Klet :: (C [[scope]] C1 ))end



72 CHAPTER 12. GENERATING SEQUENTIAL CODEIf the let-construct is in tail position there is no need to end the construct with a Kendlet (1)instruction since the environment will be replaced when the Kreturn instruction is executed.A single recursive function binding has the following compilation scheme.C [[dbFIX ([(dbFN f ; )]; body)]] C �let val C1 = if is return C then Celse Kendlet 1 :: Cval lbl = new label ()in push exp (f , lbl);Kletrec1 lbl :: (C [[scope]] C1 )endThis is a special case of the compilation of a set of mutually recursive functions (see below).In this special case there is no need to allocate dummy variables and then later update thesedummy variables. Note that since the abstraction is recursive the name of the function shouldbe visible inside the body of the abstraction. This is ensured by using the Kletrec1 instruction(see [Ler90b, page 30]). As for a let-construct the construct need not end with a Kendlet1instruction if the construct is in tail position.To compile a set of mutually recursive function bindings all (names of the) functions mustbe visible inside every function body. We compile a set of mutually recursive function bindingsinto code that �rst introduces a dummy variable in the environment for each function in theset and then updates each entry in the environment for each corresponding function.C [[dbFIX (args; body)]] C �let val s = List .size argsval C1 = if is return C then Celse Kendlet s :: Cfun comp args [] = C [[body]] C1j comp args i ((exp, sz )::rest) = C [[exp]](Kpush :: Kaccess i :: Kprim Pupdate ::(comp args (i -1) rest))in List .foldR (fn (e, sz ) ) fn C )Kprim(Pdummy sz ) :: Klet :: C )(comp args (s-1) args) argsendThe function List.foldR is from the Edinburgh Library [Ber91].12.2.4 Exception constructsAn exception declaration is compiled using the following scheme.C [[dbEXCEPTION (excon; lexp)]] C �



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 73let val C1 = if is return C then Celse Kendlet 1 :: Cin comp string (Excon.pr excon excon)(Kmakeblock (Ref tag , 1) :: Klet ::(C [[lexp]] C1 ))endThis compilation scheme ensures that the exception name (a reference to a string) is visible (inthe dynamic environment) inside the scope of the exception. Code is generated that creates astring (the name of the exception constructor), builds a reference to this string (creating anexception name) and then binds this value in the scope of the exception declaration (lexp).The compilation scheme for raising an exception is simple since the abstract machine has aprimitive for this purpose. C [[dbRAISE lexp]] C �C [[lexp]] (Kprim Praise :: discard dead code C )The function discard dead code discards all code in the continuation up to the next Klabelinstruction.fun discard dead code [] = []j discard dead code (C as (Klabel :: )) = Cj discard dead code ( :: rest) = discard dead code restCompilation of a handle construction follow the compilation scheme below.C [[dbHANDLE (lexp body ; lexp handle)]] C �let val (branch1 , C1 ) = make branch Cval lbl = new label ()val C2 = if is return C1 then C1else Kendlet 1 :: C1in Kpushtrap lbl ::(C [[lexp body]](Kpoptrap :: branch1 :: Klabel lbl ::Kpushmark :: Kpush ::(C [[lexp handle]] (Kapply :: C2 ))))endWe use the instructions Kpushtrap(lbl) and Kpoptrap to enclose the body of the handler. TheKpushtrap(lbl) instruction sets the current handler to lbl . If an exception (exception name,value) is raised by the Zam instruction Kprim(Praise) the code will continue at label lbl andthe tuple (exception name, value) will be in the accumulator. Code is built that applies thehandler (lexp handle) to the tuple (exception name, value). The Zam instruction Kpoptrapremoves the label lbl as the current handler and reinstalls the old handler.



74 CHAPTER 12. GENERATING SEQUENTIAL CODE12.2.5 Switch constructsNot all switch constructs are compiled the same way. Integer switches and value constructorswitches are compiled similarly since value constructors are tagged values and hence di�eren-tiated by integers. Because of the special nature of integers it is possible to compile integerswitches and value constructor switches into very e�cient code. Code can be organized as adecision tree where every node is a switch on integers which are not far apart (the distancebetween integers has to be less than a given constant). The compilation of a given integer orvalue constructor switch is done by transformation. First a decision tree is built. It is describedby the datatype given below.datatype decision tree =DTfailj DTinterval of decision tree �flow :int , act :dbLambdaExp Array .Array , high:intg �decision treeThe structure Array is from the Edinburgh Library [Ber91]. The algorithm to construct sucha balanced decision tree is fairly complex and will not be discussed here3. The function thatimplements this algorithm is compile nbranch. It takes as arguments a function that mapsentries to integers and a list of entries paired with lambda expressions, and it returns a decisiontree (as described above). When a decision tree has been built it is possible to generate code forthe switch construct. This is done (partly) by the compilation function comp decision default .fun comp decision default tree default lbl C =letopen Arrayval (branch1 , C1 ) = make branch Cfun comp dec (DTfail) C = Kbranch default lbl ::discard dead code Cj comp dec (DTinterval(left , dec, right)) C =letval (lbl right , Cright) =(case right ofDTfail ) (default lbl , C )j ) label code (comp dec right C ))val (lbl left , Cleft) =(case left ofDTfail ) (default lbl , Cright)j ) label code (comp dec left Cright))in Kbranchinterval(#low dec, #high dec,lbl left , lbl right) ::(case size (#act dec) of1 ) C [[(#act dec) sub 0]] (branch1 :: Cleft)3The algorithm is originally from the Caml Light system [Ler90b], but it has been translated into StandardML.



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 75j ) comp switch default (#act dec)branch1 default lbl Cleft)endin comp dec tree C1endThere is a Zam instruction Kbranchinterval(low, high, lbl left, lbl right) that causes the controlto jump to lbl left if the integer value in the accumulator is less than the integer value low ,to lbl right if the integer value in the accumulator is greater than the integer value right andotherwise to the next instruction. Code for a decision tree is generated recursively by use of thefunction comp dec. For a decision tree of the form DTinterval(left, dec, right) code is generatedthat given an integer value in the accumulator \jumps" to the corresponding subtree by use ofthe Zam instruction Kbranchinterval(low, high, lbl left, lbl right). If the decision tree is of theform DTfail code that branches to a default label (default lbl) is generated.The compilation function comp switch default is de�ned below.fun comp switch default v branch1 default lbl C =letopen Arrayval switchtable = create (size v) 0fun comp cases n =if n >= size v then Celseletval lamb = v sub nval C ' = branch1 :: comp cases (n+1)val (lbl , C1 ) =if lamb = dbSTATICFAIL then (default lbl , C ')else label code (C [[lamb]] C ')in update (switchtable, n, lbl);C1endval code = discard dead code(comp cases 0)in add switchtable switchtable codeendThis compilation function creates code for all lambda expressions in the array v and it alsostores a label to each of these compiled expressions in a separate table prior to calling theadd switchtable compilation function. The lambda instruction dbSTATICFAIL is inserted inthe lambda expression arrays by the compile nbranch function at places where there are holesin the switch, and such a lambda expression compiles into a branch to the compiled code forthe default expression. The add switchtable compilation function is de�ned below.



76 CHAPTER 12. GENERATING SEQUENTIAL CODEfun add switchtable switchtable C =letfun check equal switchtab 0 = truej check equal switchtab n =if ((switchtab sub 0) <> (switchtab sub n))then falseelse check equal switchtab (n-1)in if (check equal switchtable ((size switchtable) - 1)) then(case C of(Klabel lbl :: C1 ) )if (lbl = (switchtable sub 0)) then Celse Kbranch (switchtable sub 0) :: Cj )Kbranch (switchtable sub 0) :: C )elseKswitch switchtable :: CendThe Kswitch instruction takes an integer (label) array as argument. The informal semanticsof this Zam instruction is to jump to the label located in the k'th cell in the array, where k isthe integer value located in the accumulator. If all labels (integers) in the array (switchtable)are equal we simply make a branch to this label (integer), otherwise a Kswitch instruction isinserted in the code prior to the continuation. Note that the �rst part of the continuation willinclude code associated with the labels in the switch table (switchtable).As an example we now show how an integer switch is compiled. There are two cases. Onethat has a default expression and one that does not. We �rst show how an integer switch havingno default expression is compiled.C [[dbSWITCH I (dbSWITCH (arg; casel ; None))]] �letval lbl = 0val C1 = comp decision default(compile nbranch (fn i ) i) casel) lbl Cin C [[arg ]] C1endSince no jumps will be executed to the label lbl a dummy label is used in the compilation.First code is generated to evaluates the argument to be compared to the entries in the case list(casel). Then code for the compilation tree is built as described above. Note that since thecase list is a list of integers and lambda expressions the function to pass to compile nbranch issimply the identity function.The compilation scheme for an integer switch having a default expression is given below.C [[dbSWITCH I (dbSWITCH (arg; casel ; Some lexp default))]] �



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 77letval lbl = new label ()val C1 = comp decision default (compile nbranch(fn i ) i) casel) lbl Cin push exp (lexp default , lbl);C [[arg ]] C1endBesides from delaying the compilation of the default lambda expression the compilation is asabove.Other switch constructs (real switches, string switches and exception constructor switches)are simply compiled as a sequence of branching tests. Real switches and string switches could becompiled more e�ciently since an ordering relation exists. For exception constructor switchesthis cannot be done since no ordering exist on compile time. As an example we show how anexception switch is compiled. All exception switches in the lambda language have a defaultexpression, hence there is only one case to consider.C [[dbSWITCH E (dbSWITCH (arg ; casel ; Some lexp default))]] �letval (branch out , C1 ) = make branch Cin C [[arg ]] (Kprim (P�eld 1) :: Kpush ::comp exc casel casel branch out(Kpop :: (C [[lexp default ]] C1 )))endFirst code is generated that evaluates the argument (an exception constructor) and then theexception name (a reference to a string) is extracted from the exception constructor. Thisis done since switches on exceptions is done on exception names. The exception case listis compiled by the compilation function comp exc casel and �nally the default expression iscompiled (lexp default). The comp exc casel compilation function is de�ned below.fun comp exc casel casel branch out C =letfun comp [] = Cj comp ((v , lexp) :: rest) =letval lbl = new label ()val getv = case v ofGV gv ) Kget global gvj DB i ) Kaccess iin Kpop :: Kpush :: Kpush :: getv ::Ktest(Pnoteq test , lbl) :: Kpop :: C [[lexp]]



78 CHAPTER 12. GENERATING SEQUENTIAL CODE(branch out :: Klabel lbl :: comp rest)endin comp caselendThis compilation function generates code that tests (sequentially) if the argument exceptionname of the switch construct is equal to the exception name of an entry in the exception caselist. If such a test succeeds the compiled code for the corresponding lambda expression willbe executed. If no test succeeds the compiled code for the default lambda expression will beexecuted.12.2.6 PrimitivesMost primitives are compiled trivially. In the following we show how the primitives in thelambda language, mentioned in section 11.2, are compiled into Zam code. A value constructorthat takes no argument is compiled as follows.C [[dbPRIM (dbCONprim i ; [])]] C �into accu [Kquote(SCblock(ConstrRegular(i , 1), []))] CThe compilation scheme for a value constructor applied to an argument is given below.C [[dbPRIM (dbCONprim i ; [lexp])]] C �C [[lexp]] (Kmakeblock(ConstrRegular(i , 1), 1) :: C )De-construction of a value constructor carrying an argument is compiled as below.C [[dbPRIM (dbDECONprim; [lexp])]] C �C [[lexp]] (Kprim (P�eld 0) :: C )A constructor that takes an argument is a block with the argument value in the �rst �eld. Tode-construct such a constructor we simply extract the argument value from this �eld.As for variables there are two kinds of exception constructors in the lambda language basedon de Bruijn indexes. The �rst kind extracts the corresponding exception name (a reference toa string) from a local variable (a de Bruijn index). The second kind extracts the correspondingexception name from a global variable (a gvar). The �rst kind takes as argument, in additionto an optional argument expression, a de Bruijn index of an exception name. An exceptionconstructor of this kind that does not take an argument is compiled as follows.C [[dbPRIM (dbEXCONprim i ; [])]] C �into accu [Kaccess i , Kpush,Kquote(SCblock(ConstrRegular(0,1), [])),Kmakeblock(ConstrRegular(0,0), 2)] C



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 79The exception constructor compiles into code that constructs a block consisting of the excep-tion name (a reference to a string) and a place holder (a unit value). The Zam instructionKquote(SCblock(ConstrRegular(0,1), [])) simply introduces a unit value (of type unit) into theaccumulator.The compilation scheme below is for an exception constructor (of the same kind) that takesan argument. C [[dbPRIM (dbEXCONprim i ; [lexp])]] C �Kaccess i :: Kpush :: C [[lexp]](Kmakeblock(ConstrRegular(0,0), 2) :: C )In this case the exception constructor compiles into code that constructs a block consisting ofthe exception name (a reference to a string) and a value.An exception constructor that extracts the exception name from a global variable and thatdoes not take an argument is compiled as shown below.C [[dbPRIM (dbGLOBALEXCONprim gv ; [])]] C �into accu [Kget global gv , Kpush,Kquote(SCblock(ConstrRegular(0,1), [])),Kmakeblock(ConstrRegular(0,0), 2)] CBelow is the compilation scheme for an exception constructor that takes an argument andextracts the exception name from a global variable.C [[dbPRIM (dbGLOBALEXCONprim gv ; [lexp])]] C �Kget global gv :: Kpush :: C [[lexp]](Kmakeblock(ConstrRegular(0,0), 2) :: C )De-construction of an exception constructor that takes an argument is compiled by thefollowing scheme. C [[dbPRIM (dbDEEXCONprim; [lexp])]] C �C [[lexp]] (Kprim (P�eld 0) :: C )The �eld holding the argument value is simply extracted from the exception constructor (ablock of size two).Empty records are compiled using the scheme below.C [[dbPRIM (dbRECORDprim; [])]] C �into accu [Kquote(SCblock(ConstrRegular(0,1), []))] CNonempty records are compiled as follows.C [[dbPRIM (dbRECORDprim; lexps)]] C �



80 CHAPTER 12. GENERATING SEQUENTIAL CODElet fun compexp list [] C = Cj compexp list [lexp] C = C [[lexp]] Cj compexp list (lexp::rest) C =compexp list rest (Kpush :: (C [[lexp]] C ))in compexp list lexps (Kmakeblock ((ConstrRegular(0,0)),List .size lexps) :: C )endFirst the values of all components, except the �rst one, are computed and pushed onto thestack (note the reverse order). The �rst one is evaluated and put in the accumulator, then theKmakeblock instruction pops all arguments from the stack and creates a record containing thevalues of the arguments.Compilation of selection of a value from a record is as follows.C [[dbPRIM (dbSELECTprim n; [lexp])]] C �C [[lexp]] (Kprim (P�eld n) :: C )The pervasives are compiled trivially. We show below how the construct for integer additionis compiled. C [[dbPRIM (dbPLUS INTprim; [lexp1 ; lexp2 ])]] C �C [[lexp2]] (Kpush :: (C [[lexp2]] (Kprim Paddint :: C )))For pervasives like div that may raise an exception the corresponding exception constructoris passed as an extra argument to the primitive. When compiling such pervasives code isgenerated such that the primitive in the abstract machine can raise the exception if needed.How the construct for integer division is compiled is shown below.C [[dbPRIM (dbDIV INTprim; [lexp1 ; lexp2 ; lexp3 ])]] C �C [[lexp2 ]] (Kpush :: (C [[lexp2 ]] (Kpush :: C [[lexp3 ]](Kprim Pdivint :: C )))12.3 Generating binding codeIt is the purpose of the binding code to bind values and exception names4 to global variables(gvars). Only variables and exception names that should be visible on top level (their scope isthe rest of the session) should be bound. The names of these lambda variables and exceptionconstructors are found statically and are hence available for use in the compilation. Thecompiler contains a dynamic environment mapping lambda variables (lvars) to gvars and namesof long exception constructors (longexcons) to gvars (see section 11.3 for a description).4Only the exception names (references to strings), not the entire exception constructors, are bound. Similarly,only exception names are bound to de Bruijn indexes.



12.3. GENERATING BINDING CODE 81When the initial code for a top level declaration has been executed there is a record locatedin the accumulator. This record includes all values and exception names, introduced by thetop level declaration that should be visible on top level. The binding code simply extracts thevalues and exception names from the record and stores the values and the exception names inthe global variables to which they are associated in the dynamic environment.
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Chapter 13
Code for the Abstract Machine
The symbolic sequential code (the Zam code) need to be translated into numeric byte code (Zinccode) for the Zinc abstract machine to run it. Most of the Zam instructions correspond directlyto one byte of Zinc code. However, there are some Zinc instructions that take arguments.For these instructions the Zinc abstract machine interprets the next byte(s) in the code asargument(s) and not as instruction(s). An argument of a Zinc instruction can either be of sizeone byte, two bytes (a short) or four bytes (a word). The instructions are listed in appendix Cwhere each instruction (byte) is given a symbolic name.Not all instructions available in the abstract machine are used and not all pervasives ofStandard ML are translated into Zinc instructions at the time of writing. In the following weuse the letter Z to denote a translation from Zam code (a list of Zam instructions) to Zinccode (a string of bytes).The implementation of the Z translation step in the new back-end of the ML Kit systemuses a bu�er (a byte array) to obtain higher e�ciency instead of the concatenation operator(^) used below. For a discussion of the abstract machine and its limitations see chapter 10.13.1 Primitive output functionsThe compiler includes a few primitive output functions which are used in the translation func-tion (the Z scheme). The function out: int ! string converts an integer to a string of lengthone, holding the integer as a character. This function is used for converting names of Zincinstructions (really integers) and bytes of integer arguments to characters (strings of lengthone). Similarly the functions out short and out long convert integer arguments to strings oflength two and four, respectively (most signi�cant byte �rst).To introduce integer constants in the abstract machine the function out int const is pro-vided.fun out int const i =if (i <= 127 andalso i >= 0) then(out CONSTBYTE ) ^ (out (i+i+1))83



84 CHAPTER 13. CODE FOR THE ABSTRACT MACHINEelseif (i <= 16383 andalso i >= �16384) then(out CONSTSHORT ) ^ (out short (i+i+1))elseCrash.unimplemented "out int const : out of range"endAt the time of writing integer constants larger than 16383 or lower than � 16384 cannot beintroduced in the Zinc abstract machine1.13.2 The Z translation schemeMost Zam instructions are translated trivially, though there are some nontrivial (read: notso trivial) translation steps. Because of the similarity of most of the translations only a fewexamples will be given.As an example of a trivially translated instruction we show below how the Zam instructionKprim(Paddint) is translated into Zinc code.Z [[Kprim(Paddint) :: C]] � (out ADDINT ) ^ (Z [[C]] )All Zam instructions taking arguments are translated into Zinc instructions taking argu-ments. We show below how the Zam instruction Kget global (gv) is translated.Z [[Kget global gv :: C]] � (out GETGLOBAL) ^ (out short gv) ^ (Z [[C]] )To translate the introduction of an integer value into the accumulator the following trans-lation scheme is given.Z [[Kquote(SCatom(ACint i)) :: C]] � (out int const i) ^ (Z [[C]] )Jumps in the abstract machine are relative jumps. Translation of a Klabel(lbl) Zam instruc-tion generates no Zinc code. The function de�ne label enters the label (lbl) and the code pointer(the index in the Zinc code string) in a table for use when a branch instruction is translated.Z [[Klabel lbl :: C]] �letval = de�ne label lblin Z [[C]]end1In the Caml Light system larger integer constants are stored in global variables (statically) at link timeprior to execution of the code.



13.2. THE Z TRANSLATION SCHEME 85The function de�ne label also takes care of back-patching (updating) previously translated for-warding branches to the label lbl . This can be done since if a label lbl is unde�ned whentranslating a branch to this label the branch must be a forward branch. In this case a dummylabel (a short) is emitted and the code pointer at this place of the Zinc code is appended to a listassociated with the label lbl . This is done by the function out label . The function de�ne labelupdates (back-patches) all points in the code pointed to by the members of the list associatedto the label lbl with relative addresses to the point in the code associated with the label. As anexample of how a branch is translated we show below how the Zam instruction Kbranch (lbl)is translated into Zinc code.Z [[Kbranch lbl :: C]] � (out BRANCH ) ^ (out label lbl) ^ (Z [[C]] )The translation scheme of the Zam instruction Kbranchinterval(low, high, lbl low, lbl high)is given below. Z [[Kbranchinterval(low ; high; lbl low ; lbl high) :: C]] �(out PUSH ) ^ (out int const low) ^ (out PUSH ) ^(if low <> high then out int const high else "") ^(out BRANCHINTERVAL) ^ (out label lbl low) ^(out label lbl high) ^ (Z [[C]] )The generated code pushes the test value onto the stack, introduces the low and high inte-ger values (the high integer value only if necessary) and �nally executes the Zinc instructionBRANCHINTERVAL which takes two arguments. The �rst argument of the BRANCHIN-TERVAL instruction is the address in the generated code to jump to if the test value is lowerthan the value low , whereas the second argument is the address to jump to if the test value ishigher than the value high. If the test value is between the two values the code following theBRANCHINTERVAL instruction is executed.
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Chapter 14
Value Printing
In the new back-end of the ML Kit system values are computed and stored in the global storein the Zinc abstract machine. For the user to see these values we must generate code to printevery value resulting from evaluation. We generate Zinc code that prints the value located inthe given index of the global store. Given the type of the value, Zam code for printing can begenerated and then translated to Zinc code (see chapter 13).There are two ways in which the type of a value in the ML Kit system can be extracted.One way is to extract the type directly from the static environment of the ML Kit system[BRTT93, page 50]. Another way is to extract the type from the typed lambda language. The�rst way gives us the advantage of being able to print records with labels. This is not possibleif the second way is chosen since the typed lambda language has no notion of labels. However,if instead we chose to extract the type of a value from the static environment of the ML Kitsystem, it is not possible to print arguments to constructors. Unfortunately, it is not possibleto join the two methods since we need to extract subtypes recursively from a given type.At the time of writing the value printer extracts the type of a given value from the staticenvironment of the ML Kit system. Therefore, it is not currently possible to print argumentsto constructors. In the future the value printer should extract the type of a given value fromthe typed lambda language. If this approach is used, labels must be associated to each �eld ofa record type in the typed lambda language to print records with labels.First we describe how a type is extracted from the static environment and also how subtypesof this type are extracted. We then show how Zam code (which is translated into Zinc codeand run) is constructed to print a value of a given type.14.1 Types of values to printThe main printing function is passed a tag environment (see chapter 9), a global variable (anindex to a global store), and a typescheme from which a Type can be extracted. The structureStatObject that gives access to the type Type and the extraction functions matches a signature
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88 CHAPTER 14. VALUE PRINTINGSTATOBJECT 1. The part of the signature that is important for value printing is shown below.signature STATOBJECT =sig...type TypeSchemeval unTypeScheme : TypeScheme ! TyVar list � Typetype Type and FunType and ConsType and RecTypeval equal Type : Type � Type ! boolval unTypeRecType : Type ! RecType Optionval unTypeFunType : Type ! FunType Optionval unTypeConsType : Type ! ConsType Optionval unRecTypeSorted : RecType ! (lab � Type) listval unConsType : ConsType ! (Type list � TyName) Optionval TypeUnit : Typeval TypeInt : Typeand TypeReal : Type...endThe types TyVar , TyName and lab are the types for a type variable, a name of a type anda label. The type extraction functions mentioned in the signature allow us to traverse a typerecursively until we reaches a basic type (TypeUnit , TypeInt or TypeReal), an empty recordtype or a constructed type. When reaching a constructed type we generate code that checkswhat constructor to print. This is done by looking up constructor tags (integers) in the tag en-vironment (see chapter 9). To get the constructors (longcons) for a given type name (TyName)these can also be looked up in the tag environment. The tag environment has been added tothe dynamic basis of the compiler (see [BRTT93, page 67]).As mentioned above it is not possible to generate code that prints the arguments of aconstructor since the type of such an argument cannot be extracted. The Type list part ofthe optional result returned by the function unConsType, mentioned in the signature above,only contains the types instantiated for the type variables of the type scheme inferred for theoriginal datatype declaration. If there were an environment mapping constructors (longcons)to optional types (the type of the optional argument of a constructor) it would be possible tosubstitute the type variables in such types with the types given in the Type list part of theoptional result returned by the function unConsType and hence get the type of the argumentof a given constructor.14.2 Generating printing codeFirst we describe some basic code sequences for printing. These basic code sequences areput together and integrated with a set of mutually recursive functions for generating code for1The structure StatObject and the signature STATOBJECT are parts of the ML Kit system.



14.2. GENERATING PRINTING CODE 89printing values of di�erent types. There is a main function that surrounds the set of mutuallyrecursive functions. The purpose of this function is to generate code that extracts the valueto print from the global store. The printing code that is generated will then, by use of thestack, traverse the value and use speci�c primitives of the Zinc (Zam) abstract machine toprint sub-values of di�erent types.14.2.1 Auxiliary functionsAll basic printing primitives write their output to an output channel . This channel is bound inthe environment for the entire printing code by initial code generated by the following function.fun code get gv gv =[Kquote (SCatom (ACint 1)),Kprim (Pccall ("open descriptor",1)),Klet , Kget global gv ]The generated code �rst introduces the integer value one, indicating standard output (std out),and then calls the primitive open descriptor that returns a channel on which output from codegenerated by printing functions can be written. This channel is bound in the current environ-ment and the value to print (located in the global store) is initially put in the accumulator.To ush the output of the Zinc abstract machine the following code sequence is used.val code ush =[Kaccess 0, Kprim (Pccall ("ush",1)), Kendlet 1]This code sequence should only be appended at the end of the printing code since the Kendlet1 instruction will remove the environment containing the output channel .14.2.2 Printing base valuesFor each of the code sequences below the value to print is pushed onto the stack by the Zaminstruction Kpush. Then the output channel is accessed in the local environment and �nallythe necessary output primitive (C primitive) is called.To print an integer value, a real value, or a string value (located in the accumulator), thefollowing code sequences are used.val code print int =[Kpush, Kaccess 0, Kprim (Pccall ("output int val", 2))]val code print real =[Kpush, Kaccess 0, Kprim (Pccall ("output oat val", 2))]val code print string =[Kpush, Kaccess 0, Kprim (Pccall ("output string val", 2))]



90 CHAPTER 14. VALUE PRINTINGTo print an exception constructor the exception name to print is �rst extracted from a blockcontaining as a component a reference to a string (also a block).val code print exn =[Kprim(P�eld 1), Kprim(P�eld 0), Kpush, Kaccess 0,Kprim (Pccall ("output string val", 2))]When generating printing code it is necessary to generate code to print characters andstrings known only to the ML Kit system. These strings could be labels, parentheses etc. Togenerate code that prints such strings the code generating function code string is provided.fun code string s =letval l = explode sfun code char c =[Kquote(SCatom (ACint (ord c))), Kpush, Kaccess 0,Kprim (Pccall ("output char", 2))]fun code string list [] = []j code string list (a::r) =code char a @ code string list rin [Kpush] @ (code string list l) @ [Kpop]endThe code generated by this function �rst pushes the value in the accumulator onto the stackfor later use. Then code is generated that will print each character in the string one at a timeand �nally the value in the accumulator is restored (popped from the stack).14.2.3 Printing structured valuesThe code generating functions for printing structured values are described below. These func-tions use the type extracting functions described in section 14.1 to determine what kind ofcode should be generated. There is a function that generates code to print a value of anygiven type. This function then calls appropriate functions to generate code that prints records,constructors, etc. The function code print val takes as argument a type and generates code toprint a corresponding value of that type.fun code print val typ =if equal Type (typ,TypeInt) then code print intelseif equal Type (typ,TypeReal) then code print realelse(case unTypeFunType typ ofSome ) (code string "fn")j None )



14.2. GENERATING PRINTING CODE 91(case unTypeRecType typ ofSome rectyp )code print rec (unRecTypeSorted rectyp)j None )(case unTypeConsType typ ofSome constyp )(case unConsType constyp ofSome (types, tyname) )(case tyname ofTyName.tyName STRING )code string "n"" @code print string @code string "n""j TyName.tyName REF )code string "ref "j TyName.tyName EXN )code print exn @code string "(-)"j ) code print con tyname)j None ) code string "#")j None ) code string "#")))The function \branches out" on the given type and calls the corresponding function for gen-erating printing code. For functional values code is generated that prints the string "fn", andfor record values (and tuples) the function code print rec is called. To check whether a givenconstructed type is a string, a reference value or an exception constructor, the type names Ty-Name.tyName STRING , TyName.tyName REF and TyName.tyName EXN are tested againstthe type name of the constructed type. To generate code that prints the name of a valueconstructor the function code print con is called.The code generating function used to generate code for printing records and tuples is shownbelow.and code print rec rectyp =letfun is rec tuple rectyp =letfun tupleness [] = truej tupleness ((lab, ) :: r) n =if is LabN (lab, n) then tupleness r (n + 1)else falsein case rectyp of[ ] ) falsej ) tupleness rectyp 1end



92 CHAPTER 14. VALUE PRINTINGfun code print tup [] = []j code print tup [( , typ)] n =[Kprim (P�eld n)] @ (code print val typ)j code print tup (( , typ) :: p2 :: rest) n =[Kpush, Kprim (P�eld n)] @ (code print val typ) @(code string ",") @ [Kpop] @(code print tup (p2 :: rest) (n + 1))fun code print rec2 [] = []j code print rec2 [(lab, typ)] n =(code string (pr Lab lab ^ "=")) @[Kprim (P�eld n)] @ (code print val typ)j code print rec2 ((lab, typ) :: p2 :: rest) n =(code string (pr Lab lab ^ "=")) @[Kpush, Kprim (P�eld n)] @ (code print val typ) @(code string ",") @ [Kpop] @(code print rec2 (p2 :: rest) (n + 1))in if is rec tuple rectyp then((code string "(") @ (code print tup rectyp 0) @(code string ")"))else((code string "f") @ (code print rec2 rectyp 0) @(code string "g"))endIf the value to be printed is determined to be a tuple (each label is equal to the index inthe record, starting with 1 and the number of values in the record does not equal 2) code isgenerated that prints the value on the form(v1; v2; � � � ; vn)where n equals the number of values in the record (tuple). Otherwise code is generated thatprints the value on the form fl1 = v1; l2 = v2; � � � ; ln = vngwhere n equals the number of values in the record and where lk; k 2 f1; 2; : : : ; ng is the k'thlabel of the record.To generate code that prints the name of a constructor the following function is provided.and code print con tyname =letval cons = (TagEnv .lookupCons tagenv tynamehandle TagEnv .LookUp ) Crash.impossible"code print con.cons")val tags = (map (fn con ) TagEnv .lookupTag tagenv con) conshandle TagEnv .LookUp ) Crash.unimplemented"code print con.tags")



14.2. GENERATING PRINTING CODE 93val (lbl end , C ) = label code [Kpop]val v = Array .create (List .size tags) 0fun gen switch code [] [] = []j gen switch code (con :: cons') (tag :: tags') =letval (lbl , C1 ) =label code (code string (Con.pr con con))val = Array .update (v , tag , lbl)in C1 @ [Kbranch lbl end ] @(gen switch code cons' tags')endj gen switch code = Crash.impossible "code print con"in [Kpush, Kprim(Ptag of ), Kswitch v , Kbranch lbl end ] @(gen switch code cons tags) @ CendWhen generating code for printing the name of a constructor the list of constructors (longcons)for the given constructed type is �rst looked up in the tag environment. Then the tag for eachconstructor is looked up in the same environment. The constructed code is simply a switch onthe tags of the constructors. Code associated with each branch in the switch prints the nameof the corresponding constructor.At the time of writing it is not possible to print arguments to constructors, and especiallyarguments to the reference constructor ref cannot be printed. At a later stage however, whenthis is possible, we must check for cycles in data structures containing ref -constructions insubstructures, when generating printing code. This is necessary to ensure that execution of thegenerated printing code terminates. Another (and easier) approach is to generate code thatonly prints a given number of levels of a data structure.



94 CHAPTER 14. VALUE PRINTING



Chapter 15
The Module Language
The module language of Standard ML has a complicated static semantics. The static semanticsof Standard ML corresponds to the elaboration part of the ML Kit system, for which phrasesof the module system succeed to elaborate. The dynamic semantics for the module language[MTH90, chapter 7] is relatively simple. At present the ML Kit system does not compilephrases of the Standard ML module language into the typed lambda language described insection 11. Literature regarding implementation of the Standard ML module system includes[App92, AM87, AM91, Mac88].The declaration compiler of the core language in the ML Kit system is implemented inmonadic style [Wad92]. A similar technique can be used in an implementation of the top-leveldeclaration (topdec) compiler.In this chapter we �rst discuss how constructs of the module language can be compiled intoan untyped lambda language. We then proceed to suggest how the compilation step may beextended such that a type for each construct in the lambda language can be determined.15.1 Compilation of the module languageAs mentioned above, the dynamic semantics of the module language of Standard ML is de-scribed in [MTH90, chapter 7]. To implement the compiler correctly we need to generate codethat operates according to this dynamic semantics. There are a few errors in the dynamicsemantics described in [MTH90]. Datatype speci�cations cannot be omitted from the dynamicsemantics of the module language [Kah93, page 26] as suggested in [MTH90, chapter 7].Signatures in the dynamic semantics evaluate to interfaces. However, as mentioned in[MTH90, page 58] interfaces are naturally obtained from the static elaboration1. Hence, onlythe rules 160{169, 187{191 and 193 of [MTH90] may cause code to be introduced.We �rst discuss how to represent di�erent objects of the module system at runtime and thendiscuss the operations that are necessary on these objects.1Signature rules are included in the dynamic semantics, in [MTH90], to separate the dynamic and staticsemantics for presentation reasons. 95



96 CHAPTER 15. THE MODULE LANGUAGE15.1.1 RepresentationWe need no notion of signatures (or interfaces) at runtime since the required information canbe obtained from the static elaboration. A structure in the module system is represented as aframe. A frame is a collection of ML values and exception names listed in an order staticallyinferred from the signature (interface) of the corresponding structure. In an untyped lambdalanguage a frame could be represented as a tuple (record).A functor of the Standard ML module language is represented as a function taking asargument a frame and returning as a result a new frame.15.1.2 OperationsSeveral operations regarding the module system need to be de�ned [MTH90, chapter 7]. Inthis section we use an untyped form of the typed lambda language of chapter 11 to sketch whatkind of code is generated for each operation. The derived forms [MTH90, page 68] are notconsidered.Apart from the sub-environments of the compile time environment of the core declarationcompiler, there is a need for a sub-environment mapping structure identi�ers (strids) to lambdavariables (lvars) and a sub-environment mapping functor identi�ers (funids) to lambda variables(lvars).Compiling structure expressions (strexp)To compile a structure expression of the formstruct strdec endwe �rst compile the structure-level declaration strdec [MTH90, rule 160]. This results in a listof lambda expressions lexps (a structure-level declaration can be a sequence of structure-leveldeclarations [MTH90, rule 168]). We then build a record (tuple) in the lambda language. Thegenerated code for this operation is as follows.PRIM (RECORDprim; lexps)For a structure expression of the form longstridwe need to look up the lambda variable (lvar) associated with the long structure identi�er(longstrid) [MTH90, rule 161]. If the identi�er is simple (if it is not enclosed by a structure)the construct compiles into VAR(lvar)Otherwise, if the identi�er is not simple we need to extract the value (sub-frame) from theframe, recursively. The structure expression compiles intoPRIM (SELECTprim a1 ; [: : : ; [PRIM (SELECTprim an ; [VAR lvar ])] : : : ])



15.1. COMPILATION OF THE MODULE LANGUAGE 97where ak; k > 0 is the index for the k'th structure of the long structure identi�er (longstrid).For a structure expression of the formfunid ( strexp )we need to generate code that applies the functor (funid) to the frame (strid) [MTH90, rule162].First we need to de�ne a trimming operation that at runtime trims a frame and as a resultproduces a new frame. A trimming operation is a lambda construct that is produced given aninterface for the argument frame and an interface for the resulting frame. The generated lambdaconstruct must, given an argument frame, create a new frame lay-outed as required by the resultinterface. This operation includes cut-down and reordering of the argument frame by selectingand reordering components of the argument frame. And if an identi�er, say A, is a constructorin the argument interface and a value in the result interface, then a new corresponding �eldmust occur in the result frame, roughly corresponding to the binding \val A = S.A", where Sis the (structure) identi�er for the argument frame. Sub-frames (substructures) of the frame tobe trimmed must be trimmed, recursively, by the constructed code.The functor application should generate code that �rst evaluates the structure expressionstrexp, then trims the resulting frame to suit the functor argument signature, and then appliesthe functor funid to this trimmed frame. The result is a new frame. We need to look up thelambda variable (lvar) associated with the functor identi�er funid . The generated code for thisoperation is as follows. APP(VAR lvar ; trimmed frame)where trimmed frame is code for trimming the frame associated with the structure expressionstrexp.Structure expressions of the formlet strdec in strexp endare compiled as the corresponding expression of the core language [MTH90, rule 163]. Thegenerated code must �rst evaluate the structure-level declaration strdec (see below), bind it inthe enclosing environment and then evaluate the structure expression strexp.Compiling structure-level declarations (strdec)A structure-level declaration of the form decshould cause code for the core declaration dec to be generated.For a structure-level declaration of the formstructure strbindwhere strbind is of the formstrid h: sigexpi = strexp hh and strbind ii



98 CHAPTER 15. THE MODULE LANGUAGEwe need to generate code that for each structure binding (separated by and) binds the resultingframe in the enclosing environment [MTH90, rule 165, 169]. For each structure binding strbind ,we �rst generate code that evaluates the structure expression strexp. If the structure identi�erstrid is constrained by a signature expression (an interface), the frame is trimmed (see above)to suit the interface.Structure-level declarations of the formlocal strdec1 in strdec2 endare compiled as the corresponding declaration of the core language [MTH90, rule 166]. Thegenerated code must �rst evaluate the �rst structure-level declaration strdec1 (see below), bindit in the enclosing environment and then evaluate the second structure-level declaration strdec2 .The empty structure-level declaration [MTH90, rule 167] causes, as the empty declarationof the core language, no code to be generated.A structure-level declaration of the formstrdec1 h ; i strdec2is compiled as the corresponding declaration of the core language [MTH90, rule 168]. Thegenerated code evaluates the �rst structure-level declaration strdec1 and then evaluates thesecond structure-level declaration strdec2 .Compiling functor declarations (fundec)A functor declaration of the form functor funbindwhere funbind is of the formfunid ( strid : sigexp ) h: sigexp'i = strexp hh and funbind iiis compiled into a closure (a function closure can be used in an implementation) that whenapplied to an argument evaluates the structure expression strexp in the environment containedin the closure [MTH90, rule 187, 188]. Compilation of the functor body strexp can assumethat the argument has the form prescribed by the argument interface inferred for the signa-ture expression sigexp. If the declaration is constrained by a signature expression sigexp' thegenerated code should apply the trimming operation to the resulting frame.No code is generated for an empty functor declaration [MTH90, rule 189].A functor declaration of the formfundec1 h ; i fundec2is compiled as the corresponding declaration of the core language [MTH90, rule 190]. Thegenerated code evaluates the �rst functor declaration fundec1 and then evaluates the secondfunctor declaration fundec2 .



15.2. TYPING THE CONSTRUCTS IN THE LAMBDA LANGUAGE 99Compiling top-level declarations (topdec)For each top-level declaration code for the corresponding declaration is generated [MTH90, rule191, 193]. No code is generated for a signature declaration sigdec.Compilation of the open declaration of the core language (dec)When extending the core language of Standard ML with the module language an open decla-ration is introduced in the core language. For a core declaration of the formopen longstrid1 � � � longstridnwhere n � 1, we need to bind all components mentioned in the interfaces for the long structureidenti�ers longstrid1 � � � longstridn in the enclosing environment [MTH90, rule 132].Compilation of atomic expressions of the core language (atexp)When extending the core language of Standard ML with the module language, atomic expres-sions of the core language need to be changed slightly. Atomic expressions of the formlongvarare split into two cases [MTH90, rule 104]. If the long variable name is simple (if it has nostructure name pre�xes) then the atomic expression is compiled as usual. Otherwise, we needto extract the variable recursively from the corresponding frames.For atomic expressions of the form longexcona similar approach is used [MTH90, rule 106]. If the long exception constructor is simple (if ithas no structure name pre�xes) then the atomic expression is compiled as usual. Otherwise,we need to extract the exception name en recursively from the corresponding frames.15.2 Typing the constructs in the lambda languageAs described above a frame can be represented as a tuple (record) in the untyped lambdalanguage. To be able to type all constructs of this lambda language and to keep a simplecorrespondence between structures and tuples and between functors and functions, we mustchoose how to represent exception names, since exception names may become �elds in a tuplein our scheme. Fortunately, there is a simple way of representing exception names. Representingexception names as references to strings has many advantages [App92], and this representationis chosen by most Standard ML implementations. It is worth noticing that when choosing arepresentation for exception names (e.g. string ref ), frames become records also in a schemecompiling abstract syntax constructs into the typed lambda language. Choosing representation



100 CHAPTER 15. THE MODULE LANGUAGEhowever, may restrict what can be said about the translation. And certainly, if choosingrepresentation, we loose abstraction.A typed lambda program of the ML Kit system supplies the lambda language constructwith a list of mutually recursive datatype bindings such that constructor names and types ofarguments to constructors can be extracted. This scheme may have to be changed in some waywhen implementing the top-level declaration compiler. At the time of writing it is not clearwhat changes are necessary.



Chapter 16
Conclusion
The goal was to implement a portable Standard ML compiler that generates compact code.The �rst approach to this goal was to change the front-end of an existing compiler into aStandard ML compiler. The result of this work is a compiler that compiles a large subset ofthe core Standard ML language and that has its own module system that supports separatecompilation. This compiler is capable of compiling many core Standard ML programs, thoughit lacks features such as overloading.During this work many aspects of implementation of a core Standard ML compiler havebeen investigated. These aspects include static aspects such as lexical analysis, parsing, er-ror handling, in�x resolution and type checking, but also dynamic aspects such as order ofevaluation and semantics of primitives such as equality.However, to achieve a full Standard ML compiler this way, it would be necessary to imple-ment a type checker completely from scratch and also to implement elaboration of modules.All this work was already done for the ML Kit system.The second approach to the above goal was to write a new back-end for the ML Kit system1.The ML Kit system is very modular and it is relatively easy to replace parts of the system withnew parts (chapter 9). At the time of writing the ML Kit system elaborates all phrases(including phrases of the module language) of Standard ML, and it compiles phrases of coreStandard ML into a typed lambda language.The new back-end translates phrases of the typed lambda language of the ML Kit systeminto phrases of a simpler lambda language based on de Bruijn indexes (chapter 11). Suchphrases are then compiled into symbolic sequential code (chapter 12) which is translated intoa string of byte code (chapter 13). This string of byte code is then executed on the modi�edZinc abstract machine (chapter 10) and for each value to be printed byte code is generated andexecuted (chapter 14).Though compilation of some of the lambda constructs need to be optimized the generatedcode for the ML Kit system integrated with the new back-end is rather small. As an exampleone may notice that a na��ve Fibonacci function compiles into a string of less than 60 bytes.1The version of the ML Kit system that has been used is the 1.0 version with a few extensions (as of April6, 1994). The lambda language is now a typed language and core elaboration is more e�cient.101



102 CHAPTER 16. CONCLUSIONMany dynamic aspects of an implementation of a Standard ML compiler have been inves-tigated during this work. These aspects include representation of data in memory, dynamicsemantics of phrases of Standard ML, integration of the compiler and the runtime system, andvalue printing.We have suggested, in chapter 15, how the ML Kit system could be extended such that thecompiler also compiles phrases of the module language into the typed lambda language. Thisextension is necessary, among other e�ciency optimizations, to bootstrap the ML Kit systemand hence achieve a portable Standard ML compiler that generates small e�cient code.Having reached the end of this work, the least I can say is that I have learned a lot aboutthe semantics of Standard ML and that implementation of a Standard ML compiler is not atall a trivial task.Further workLots of work need to be done before a full bootstrapped Standard ML compiler building on theML Kit system is available for general use. First of all we need to implement the suggestedextension to the compiler, such that phrases of the module language of Standard ML compilesinto phrases of the typed lambda language (chapter 15). It is also necessary to optimize theelaboration of modules in the ML Kit system, since na��ve implementations of some algorithmsfor the elaboration of modules cause the compiler to be practically unusable for large codesegments.At the time of writing the ML Kit system and the abstract machine runs concurrentlyon two Unix processes, communicating over two pipes (section 10.2). At some point (whenbootstrapping the system) it must be possible to execute code located in a �le, and it must bepossible from within the byte code to execute separate sequences of byte code (possibly locatedin a separate �le) on the abstract machine. This is the key to bootstrapping.Apart from these needs it is also necessary to implement the complete set of primitivesof Standard ML including primitives for input/output (streams). Implementation of theseprimitives is a fairly trivial task. Partly because many of the primitives are very simple andpartly because corresponding primitives are already parts of the Zinc abstract machine.The Zinc abstract machine of the Caml Light system has a few limitations (section 10.3). Itis necessary to eliminate most of these limitations of the Zinc abstract machine for bootstrappingto be possible. Fortunately, as we have seen in section 10.3, these limitations can relativelyeasily be eliminated.



Appendix A
Executable and Source Code for MiniML
This appendix includes a description of how to test theMiniMl system and a list of all sourcecode �les that have been constructed or altered.Execution �leTo start the MiniMl system you should be able to access the directory /home/mael/binlocated on idfs4 at the Technical University of Denmark. To start theMiniMl system executethe following Unix commands (after login):cd /home/mael/bin./mlThese commands should startup the MiniMl interactive system and the following lineswill appear:mml 0.1 The Technical University of DenmarkBased on Caml Light 0.6 and the ML Kit 1.0mml>It should now be possible to enter expressions and declarations of the MiniMl language(see chapter 7).Source codeThe tables below lists all �les that have been altered or constructed during construction of theMiniMl system. There is a table for each subdirectory of the /src-directory. Only the �le103



104 APPENDIX A. EXECUTABLE AND SOURCE CODE FOR MINI MLMake�le (the main make�le) in the /src-directory has been altered. There is an archive �le(a tar �le) named mml.tar containing these and other �les concerning the MiniMl system indirectory /home/mael/project ..../src/compiler/File name DescriptionMake�le Make�le for the compilerbuiltins.ml Access to built-in constructors etc.compiler.ml The compilercon�g.mlp Con�gurationerrors.ml Handling of errorsfront.ml The front-end of the compilerlexer.mli Interface for the lexerlexer.mlp Lexical analysislocation.mlp Handling of location informationmain.ml Main source �le for the compilermatch.ml The match compilermisc.ml Auxiliary functions and valuespar aux.ml Auxiliary parser functionsparser.mly Interface for the parserpr decl.ml Declaration printingsyntax.ml Abstract syntaxtr env.ml Handling of the translation environmentty decl.ml Typing of a declarationty error.ml Type errorstyping.ml Type checkingversion.ml Version descriptionopcodes.ml Zinc instructionsin�xbas.ml (new) In�x resolutionin�xcom.ml (new) In�x resolutionin�xexp.ml (new) In�x resolutionin�xexp.mli (new) In�x resolutionin�xing.ml (new) In�x resolutionin�xpat.ml (new) In�x resolutionin�xpat.mli (new) In�x resolutionin�xtab.ml (new) In�x resolution



105.../src/lib/File name DescriptionMake�le Make�le for the libraryeq.mli Interface to equality primitiveref.mli Interface to reference constructorinitbas.ml (new) Initial basis, primitivesinitbas.mli (new) Interface to the initial basismlint.ml (new) Functions on integers.../src/toplevel/File name DescriptionMake�le Make�le for the interactive systemdo phr.ml Execution of a compiled phrasemain.ml Main �le for the interactive systempr value.ml Value printingtoplevel.ml The toplevel looptoplevel.mli Interface for the toplevel loopversion.ml Version description.../src/runtime/File name DescriptionMake�le Make�le for the abstract machinemlvalues.h Representation of valuesequal.c The equality primitiveio.c Input/outputmain.c The main source �le of the abstract machineprims.c Primitivessys.c System interaction
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Appendix B
Executable and Source Code for theML Kit system
This appendix includes a description of how to test the new back-end of the ML Kit systemand it also includes a list of all source code �les that have been constructed or altered.Execution �leTo start a version of the ML Kit system which is integrated with the Zinc abstract machine,you must be able to access the directory /home/mael/bin located on idfs4 at the TechnicalUniversity of Denmark. To start this version of the ML Kit system execute the following Unixcommands (after login):cd /home/mael/mlkit/KitZam./StartKitAgainThese commands should startup the Standard ML of New Jersey compiler with the newversion of the ML Kit system loaded. The following lines will appear:ML-Kit 1.x. --- 28.08.94This version generates lambda code and compiles it into zinc codeand executes it on the Zinc abstract machine.Use 'interact ()' to toggle debugging flags.val it = () : unit-To start the compiler type eval () at the prompt. This function starts the abstract machine,compiles and executes a prelude and returns the control to the user. It is now possible to enterphrases of core Standard ML. The session is terminated with control-C. Another function,interact (), is available at the Standard ML of New Jersey prompt. This function allows fortoggling of the debugging ags. 107



108 APPENDIX B. EXECUTABLE AND SOURCE CODE FOR THE ML KIT SYSTEMSource codeThe tables below lists all �les that have been altered or constructed during constructionof the new back-end of the ML Kit system. There is a table for each subdirectory of the.../mlkit/KitZam-directory and a table for the .../mlkit/KitZam-directory itself. There is anarchive �le (a tar �le) named kitzam.tar containing these and other �les concerning the newback-end of the ML Kit system in the directory /home/mael/project ..../mlkit/KitZamFile name DescriptionCompiler/ Updated and new �les for the compilerFLAGS.sml Debugging ags (signature)Flags.sml Debugging ags (functor)HOOKS.sml Hooks for the parser and the lexerKIT BUGS.txt (new) Current bugs in the systemKitCompiler.sml Linking of the compilerML CONSULT COMP.Ece.To Files in the make projectPrelude.sml The current preludePrelude.sml.gem Another preludePrelude.sml.orig The original preludeREADME (new) General informationRuntime/ The abstract machineuse me comp.ece.to Initial use �le for the make systemThe ML Kit system is built by importing (use) the �le use me comp.ece.to into a StandardML system with the Edinburgh Library [Ber91] loaded. This �le then imports (in the cor-rect order), by use of the make system of the Edinburgh Library, all �les listed in the �leML CONSULT COMP.Ece.To..../mlkit/KitZam/RuntimeOnly �les of the Zinc abstract machine of Caml Light that have been changed are listed in thetable below.File name DescriptionMake�le Make�le for the runtime systemcon�g.h Con�gurationmlvalues.h Representation of valuesequal.c The equality primitive



109interp.c The Zinc code interpretermain.c The main source �le for the abstract machineprims.c List of C primitivessys.c System interactionsml prim.c (new) Primitives for value printingLOGFILE.txt (new) A log�le.../mlkit/KitZam/CompilerFile name DescriptionCOMPILER DYNAMIC BASIS.sml Dynamic basis for the compiler (signature)CompileAndRun.sml Linking of the compilation stepsCompilerDynamicBasis.sml Dynamic basis for the compiler (functor)DYNAMIC ENV.sml Dynamic environment (signature)DynamicEnv.sml Dynamic environment (functor)Evaluation.sml A linking functorGVARS.sml (new) Global variables (signature)Gvars.sml (new) Global variables (functor)TAG ENV.sml (new) Tag environment (signature)TagEnv.sml (new) Tag environment (functor)ValPrint.sml (new) Value printing (functor)ZamBackEnd/ (new) The new back-end of the compiler.../mlkit/KitZam/Compiler/ZamBackEndThe �les listed in the table below are all new.File name DescriptionBUFF CODE.sml Byte code bu�er (signature)Bu�Code.sml Byte code bu�er (functor)COMPILE LAMBDA.sml Generation of Zam code (signature)CONFIG ZAM.sml Con�guration �le (signature)CompileLambda.sml Generation of Zam code (functor)Con�gZam.sml Con�guration �le (functor)EMIT ZAM.sml Generation of Zinc code (signature)EmitZam.sml Generation of Zinc code (functor)INSTRUCT ZAM.sml Zam instructions (signature)



110 APPENDIX B. EXECUTABLE AND SOURCE CODE FOR THE ML KIT SYSTEMInstructZam.sml Zam instructions (functor)LABELS.sml Label generation (signature)LAMBDA EXP DEBRUIJN.sml de Bruijn lambda language (signature)Labels.sml Label generation (functor)LambdaExpDeBruijn.sml de Bruijn lambda language (functor)OPCODES.sml Zinc instructions (signature)Opcodes.sml Zinc instructions (functor)RUN ZINC.sml Execution of Zinc code (signature)RunZinc.sml Execution of Zinc code (functor)TOOLS ZAM.sml Auxiliary functions for Zam code generation(signature)TRANSLATE KIT LAMBDA.sml Translation of the typed lambda language(signature)ToolsZam.sml Auxiliary functions for Zam code generation(functor)TranslateKitLambda.sml Translation of the typed lambda language(functor)



Appendix C
Zinc instructions
The table below lists the instructions for the Zinc abstract machine [Ler90b]. Arguments toeach of the instructions can either be bytes, shorts (two bytes) or words (four bytes).Instruction InstructionCONSTBYTE (byte) CONSTSHORT (short)GETGLOBAL (short) SETGLOBAL (short)CUR (short) SWITCH (byte, short, : : :, short)BRANCH (short) BRANCHIF (short)BRANCHIFNOT (short) POPBRANCHIFNOT (short)BRANCHIFNEQTAG (short) BRANCHIFEQ (short)BRANCHIFNEQ (short) BRANCHIFLT (short)BRANCHIFGT (short) BRANCHIFLE (short)BRANCHIFGE (short) BRANCHINTERVAL (short, short)C CALL1 (short) C CALL2 (short)C CALL3 (short) C CALL4 (short)C CALL5 (short) C CALLN (byte, short)MAKEBLOCK (word) MAKEBLOCK1 (byte)MAKEBLOCK2 (byte) MAKEBLOCK3 (byte)MAKEBLOCK4 (byte) TAGOFACCESS (byte) ACC0ACC1 ACC2ACC3 ACC4ACC5 ATOM (byte)ATOM0 ATOM1ATOM2 ATOM3ATOM4 ATOM5ATOM6 ATOM7
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112 APPENDIX C. ZINC INSTRUCTIONSATOM8 ATOM9GETFIELD (byte) GETFIELD0GETFIELD1 GETFIELD2GETFIELD3 SETFIELD (byte)SETFIELD0 SETFIELD1SETFIELD2 SETFIELD3STOP CHECK SIGNALSAPPLY RETURNAPPTERM GRABLET LETREC1DUMMY (byte) UPDATEENDLET (byte) ENDLET1PUSHTRAP (short) RAISEPOPTRAP PUSHPOP PUSHMARKPUSH GETGLOBAL APPLY (short) BOOLNOTPUSH GETGLOBAL APPTERM (short) NEGINTSUCCINT PREDINTADDINT SUBINTMULINT DIVINTMODINT ANDINTORINT XORINTSHIFTLEFTINT SHIFTRIGHTINTSIGNEDSHIFTRIGHTINTUNSIGNED EQNEQ LTINTGTINT LEINTGEINT INCRDECR FLOATOPINTOFFLOAT EQFLOATNEQFLOAT LTFLOATGTFLOAT LEFLOATGEFLOAT STRINGLENGTHGETSTRINGCHAR SETSTRINGCHAREQSTRING NEQSTRINGLTSTRING GTSTRINGLESTRING GESTRINGMAKEVECTOR VECTLENGTHGETVECTITEM SETVECTITEMFLOATOFINT NEGFLOATADDFLOAT SUBFLOATMULFLOAT DIVFLOATFor the SWITCH instruction the �rst argument tells the number of arguments to follow. TheFLOATOP instruction must be followed by one of the oating point (real) instructions (INTOF-FLOAT, ADDFLOAT, SUBFLOAT or MULFLOAT ) and these instructions must be precededby the FLOATOP instruction.
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