
18

FinPar: A Parallel Financial Benchmark

CHRISTIAN ANDREETTA, Nordea Capital Markets
VIVIEN BÉGOT, LexiFi
JOST BERTHOLD, MARTIN ELSMAN, FRITZ HENGLEIN, TROELS HENRIKSEN,
MAJ-BRITT NORDFANG, and COSMIN E. OANCEA, University of Copenhagen

Commodity many-core hardware is now mainstream, but parallel programming models are still lagging
behind in efficiently utilizing the application parallelism. There are (at least) two principal reasons for this.
First, real-world programs often take the form of a deeply nested composition of parallel operators, but
mapping the available parallelism to the hardware requires a set of transformations that are tedious to
do by hand and beyond the capability of the common user. Second, the best optimization strategy, such as
what to parallelize and what to efficiently sequentialize, is often sensitive to the input dataset and therefore
requires multiple code versions that are optimized differently, which also raises maintainability problems.

This article presents three array-based applications from the financial domain that are suitable for GPGPU

execution. Common benchmark-design practice has been to provide the same code for the sequential and
parallel versions that are optimized for only one class of datasets. In comparison, we document (1) all
available parallelism via nested map-reduce functional combinators, in a simple Haskell implementation
that closely resembles the original code structure, (2) the invariants and code transformations that govern
the main trade-offs of a data-sensitive optimization space, and (3) report target CPU and multiversion GPGPU

code together with an evaluation that demonstrates optimization trade-offs and other difficulties. We believe
that this work provides useful insight into the language constructs and compiler infrastructure capable of
expressing and optimizing such applications, and we report in-progress work in this direction.

CCS Concepts: �Computing methodologies → Parallel programming languages; �Software and its
engineering → Source code generation; Software performance;

Additional Key Words and Phrases: Data-parallel functional language, fusion, fission, strength reduction

ACM Reference Format:
Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Henglein, Troels Henriksen, Maj-
Britt Nordfang, and Cosmin E. Oancea. 2016. FinPar: A parallel financial benchmark. ACM Trans. Archit.
Code Optim. 13, 2, Article 18 (June 2016), 27 pages.
DOI: http://dx.doi.org/10.1145/2898354

This work was partially supported by the Danish Council for Strategic Research under contract 10-092299
(HIPERFIT: http://hiperfit.dk). C. Andreetta contributed to this article in his personal capacity; the views
expressed are his own and do not necessarily represent the views of Nordea.
Authors’ addresses: C. Andreetta, Nordea Capital Markets, Strandgade 3, 1401 Copenhagen, Denmark;
email: christian.andreetta@nordea.com; V. Bégot, 892 Rue Yves Kermen, 92100 Boulogne-Billancourt,
France; email: vivien.begot@lexifi.com; J. Berthold, Commonwealth Bank of Australia, 1 Harbour St, 2000
Sydney, NSW; email: jberthold@acm.org; M.-B. Nordfang, Department of Mathematical Sciences, University
of Copenhagen, Nørre Campus, Universitetsparken 5, DK-2100 Copenhagen, Denmark; email: mbnordfang@
math.ku.dk; M. Elsman, F. Henglein, T. Henriksen, and C. E. Oancea, Department of Computer Science,
University of Copenhagen, Nørre Campus, Universitetsparken 5, DK-2100 Copenhagen, Denmark; emails:
{mael, henglein, athas, cosmin.oancea}@diku.dk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1544-3566/2016/06-ART18 $15.00
DOI: http://dx.doi.org/10.1145/2898354

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

http://dx.doi.org/10.1145/2898354
http://hiperfit.dk
http://dx.doi.org/10.1145/2898354

18:2 C. Andreetta et al.

1. INTRODUCTION

With the mainstream emergence of many-core architectures, such as GPGPUs, massive
parallelism has become a focus area of industrial application development. However,
parallel programming models are lagging behind the advance in hardware: parallelism
extraction and optimization is still tedious and often requires specialized knowledge.

Proposed solutions span a wide range of language and compiler techniques. On one
end of the spectrum, we find the parallel assembly of our time, low-level APIs such as
CUDA, OPENCL, and OPENACC. On the opposite end are compilation techniques to auto-
matically extract and optimize parallelism—usually within a language context, such as
flattening [Blelloch et al. 1994] (NESL), polyhedral frameworks [Pouchet et al. 2011] (C),
or interprocedural summarization of array subscripts [Hall et al. 2005] (Fortran). The
use of domain-specific languages (DSLs) for parallel computation represents a middle
ground (with blurred boundaries), providing high-level operations with parallel im-
plementations and targeting data-parallel applications on arrays or graphs [Reinders
2007; Nguyen et al. 2014; Giles et al. 2011; Chakravarty et al. 2011].

This article presents a benchmark suite for optimizing compilers and parallel DSLs
that comprises three large-scale modeling components of a financial engine: a pricing
engine for financial contracts, a local volatility calibration method, and an interest rate
calibration method based on observed swaption prices. (The results of the calibration
methods in principle can be used for pricing.)

Our benchmark provides sequential (original) source code, ranging from hundreds to
several thousands of lines of compact code, and different parallel versions for multicore
and GPGPU execution. For example, the sequential code can be used to test autoparal-
lelization solutions, with the parallel versions providing the comparison baseline.

Although the initial motivation has been to efficiently parallelize the original code
base (C and OCaml), the journey has quickly become more important than the desti-
nation. Since the code exhibits deeply nested parallelism in which the optimal paral-
lelization strategy is sensitive to the input dataset, the focus has shifted toward (1)
fully expressing all parallelism and algorithmic trade-offs with a set of generic data-
parallel array operators and (2) studying how a compiler can exploit the compositional
algebra of such operators to derive systematically implementations that are efficient
for all datasets1 (i.e., efficient optimization of the common case but within work-depth
asymptotic guarantees). Work is in progress to integrate these findings into Futhark, a
pure functional language and its compiler infrastructure [Henriksen 2014; Henriksen
and Oancea 2013, 2014; Henriksen et al. 2014].

1.1. Main Contributions: “Why Yet Another Benchmark?”

Our work differs in several important ways from common benchmark practice.
First, if many-core architectures are to follow Moore’s law, the programming model

should assume infinite hardware parallelism, whereas efficient sequentialization of
the excess parallelism should be just an optimization, albeit an important one. In this
sense, we provide a pure functional Haskell implementation that retains the origi-
nal program structure and specifies all available parallelism in terms of nested map,
reduce, scan, and filter operations on lists (runtime is irrelevant). Furthermore, the
higher-level semantics of such parallel basic blocks allows code transformations to be
reasoned about in terms of simple but powerful rewrite rules rather than in terms

1Supporting nested parallelism is important, because although companies are eager to reap the benefits
of many-core architectures, they are unwilling to rewrite their (sequential) code base more than once, and
only if the resulting code structure still resembles the original algorithm. However, static extraction and
optimization of parallelism for GPGPU requires a set of transformations (e.g., fusion, fission, loop interchange)
that are tedious, nontrivial, and result in an unmaintainable code base.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:3

Fig. 1. Imperative code for scan with vectorized + (a) and segmented scan with + (scan each row) (b).

of tedious and conservative dependence analysis of array indices. As an important
example, we have found that (segmented) scan, a well-known basic block of parallel
programming [Blelloch 1989], plays a predominant role in our benchmark, albeit it
appears rarely (if at all) in other parallel benchmarks.

One possible reason could be that scan instances are difficult to recognize and
optimize in imperative code. Figure 1(a) shows a scan with the vectorized addition
operator—that is, each column of res will contain the prefix sums of each column in
inp. Even if recognized, such a scan with a vectorized operator is unsuitable for GPGPU

execution. However, if recognized, the user or compiler can reason equationally about
the use of the high-level transformation, shown in Figure 1(b), which moves the scan
inward; if the input array is transposed, then the prefix sums can be computed row-
wise and the result transposed back. This transformation would allow for efficiently
exploiting the parallelism of both loops (map and scan), which would correspond to a
segmented scan with a scalar addition operator (segments are rows).

Second, to a large extent, current solutions employ a “one size fits all” parallelization
strategy that results in one target program for all datasets. For example, in OPENCL,
the user explicitly specifies which operations are executed in parallel and which are
sequential. Moreover, in a purely functional context, the flattening transformation
[Blelloch 1996] offers work-depth asymptotic guarantees for the parallelized program
but does not optimize memory usage, communication, or locality of reference. In ad-
dition, although imperative solutions typically optimize the common case (maps and
locality of reference), they do so without providing asymptotic guarantees.

In contrast, we take the perspective that the rich trade-off space revealed by the
functional specification is a generator of low-level implementations that exhibit very
different intrinsic behavior, such as the degree of parallelism, the number of executed
instructions, and their dynamic mix. In this sense, we provide documentation of the
important trade-offs and program transformations that exploit them, together with re-
alistic datasets that demonstrate these trade-offs. For instance, the dataset determines
the parallelism degree of each level of a loop nest and effective hardware utilization
may require either full parallelization or efficient sequentialization of that level (or
anywhere in between, i.e., moderate flattening). For example, local volatility calibra-
tion uses the tridiagonal solver (TRIDAG), which appears as a fully dependent loop but
can can be rewritten into scans in which the associative operators are linear-function
composition and 2 × 2 matrix multiplication, respectively. These scan instances are
expensive to parallelize, yielding significant instructional overhead and log n depth,
but are necessary for two out of three datasets to fully utilize hardware parallelism.
Another example is the strength reduction invariant in the computation of Sobol num-
bers: a computationally expensive independent formula that requires map parallelism
versus a cheaper recurrent formula that requires scan.

Finally, although several components of the proposed applications may seem to over-
lap with current benchmarks, a closer look reveals significant algorithmic differences
and challenges. For example, Black-Scholes is typically applied to price simple Euro-
pean call options, which are defined in terms of one asset measured at one date and

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:4 C. Andreetta et al.

whose implementation corresponds to a flat map on scalar operations [Chakravarty
et al. 2011]. Our option pricing engine generalizes to more complex contracts, which
are defined in terms of multiple assets measured at multiple dates, and it requires
correlation of the sampled prices across both the asset and date dimensions. In terms
of implementation, this added complexity translates to deeply nested map-scan par-
allelism (e.g., see Figure 6(b)). A second example is the GPU parallelization of the
tridiagonal solver (TRIDAG). Related solutions [Kim et al. 2011; Egloff 2011] use cyclic
reduction [Hockney 1965], which is a two-way elimination method for tridiagonal ma-
trices and is very different, mathematically, from the sequential solution. It requires
fairly sophisticated implementation techniques to resolve interthread dependencies in
a scalable manner. In comparison, our parallel implementation can be derived system-
atically by compiler/language techniques from the sequential one by pattern matching
and replacing the two well-known recurrences of TRIDAG with scans [Blelloch 1990],
which also guarantees scalability. Furthermore, the TRIDAG-based parallelization of lo-
cal volatility calibration follows and answers a direction for research proposed by Egloff
[2011]. In summary, the principal contributions of this article are as follows:

—A complete description of the available parallelism in three big-compute applications.
—A detailed exploration of the main trade-offs of a dataset-sensitive optimization space

that generates low-level implementations with different intrinsic behavior. Trade-off
examples include moderate flattening, fusion versus fission, and strength reduction.

—Language constructs that can expose the optimization trade-offs to the compiler
infrastructure, and code transformations that can take advantage of them.

—Baseline multicore/GPGPU code and an evaluation that demonstrates the trade-offs in
terms of both parallel runtimes and other characteristics, such as dynamic instruc-
tion mixes, cache miss ratio, global memory footprint, and bandwidth utilization.

2. PRELIMINARIES

This section briefly presents the financial motivation for studying the three appli-
cations, the functional notation that we used to describe the available application
parallelism and code transformations, and the experimental methodology.

2.1. Motivation for High-Performance Financial Computations

The financial system is facing fundamental computational challenges, led by an in-
crease in complexity, interconnectedness, and speed of interaction between partici-
pants. Considering that financial institutions relocate capital across economic sectors,
and are thus instrumental in providing stable economical growth, should a large insti-
tution face liquidity shortage, a set of cascade effects may negatively impact the whole
system. The impact of capital allocation across a large number of forecasted scenarios
is estimated via large-scale simulations, which present a compelling and challenging
application for commodity many-core hardware (e.g., GPGPUs), albeit they transcend the
domain of embarrassingly parallel computing. For example, Monte Carlo simulations,
originally developed to investigate the stochastic behavior of physical systems in com-
plex, multidimensional spaces, have emerged as a tool of choice in critical financial
applications, such as risk modeling and contract pricing. In these simulations, gains
and risks can be described by means of a probabilistic formulation of possible market
scenarios, estimated and aggregated with a Monte Carlo method, and evaluated at
present time by a discount function. This article presents three components used in
practice to implement such a task.

Section 3 presents a pricing engine for a set of vanilla and exotic options in scenarios
with known volatility. Section 4 presents a method for local volatility calibration, in
which market volatility is modeled as a parameter of the option price. The volatility
is calibrated by solving a system of continuous partial differential equations (PDEs)

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:5

Fig. 2. Types and semantics of array constructors and second-order combinators.

using Crank-Nicolson’s finite differences method [Munk 2007]. Section 5 presents a
calibration of the parameters of an interest rate model based on a set of available
swaption prices. The interest rate model can be used to value financial products, such
as interest rate swaps.

2.2. Functional Language Notation

This work uses a (pure) functional notation that resembles ML [Milner et al. 1997]. In
particular, it assumes strict evaluation and supports let bindings for local variables.
However, unlike ML, in our notation, user-defined functions are monomorphic and their
return and parameter types are specified explicitly. Figure 2 presents the types and
semantics of (some of) the built-in polymorphic, second-order functions (SOACs) that can
be used to construct and combine arrays.

Types include char, bool, int, real, tuples, and multidimensional regular arrays
(i.e., arrays for which all subarray elements have identical shapes). Array shapes
can be optionally specified in the declaration of functions (e.g., [[int],n] denotes
a matrix with n rows). The operations zip and unzip move between the array-of-
tuple and tuple-of-array representations, and iota and replicate build the iteration-
space and same-value array, respectively. The operations map, filter, reduce, and scan
are the parallel array operators of the Bird-Meertens formalism [Bird 1987] and are
used for mapping over an array with a function, filtering the elements of an array
by a predicate, and reducing and computing all prefix sums of an array’s elements
by a binary-associative operator. Anonymous (or curried) functions are syntactically
permitted only as SOAC function arguments. For instance, the code let t =... in map
(fn int (int x)=>x+t, iota(t)) builds the result array by adding t to each element
of [0. . .t-1], where t is defined in the outer context. Finally, three types of stream
operations are useful to express high-level invariants, such as strength reduction, and
to complete the compositional SOAC algebra, which includes laws for fusion and fission:

—The streamPar and streamRed operations apply the input function g to each element
of an arbitrary partitioning of the input array a, and concatenates or reduces the
resulting arrays or values, respectively. Both streams allow chunks to be processed
in parallel, but the user must ensure that any partitioning gives the same result.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:6 C. Andreetta et al.

—The streamSeq operation features sequential chunk execution; the result ei of pro-
cessing chunk ai becomes the (accumulator) input for processing the next chunk
i + 1.

Notice that the SOACs have implicit data-parallel semantics; they not only declare
parallelism (as in OPENMP) but also guarantee data-race free programs.

2.3. Experimental Methodology and Code Availability

The parallel and sequential runtimes are averaged across 20 runs, and uncertainties
are reported with 95% confidence. The reported runtimes include all overheads except
(1) reading the input data and validating and writing the result to file, and (2) GPU

context creation and build time. (The memory transfer time between host and device is
accounted for but is negligible in most cases because all computation is performed on
GPGPU and the memory size of the input dataset and result are small.) The multicore
and GPU code is implemented in OPENMP and OPENCL, and is compiled with GCC 4.8.4
(-fopenmp -O3) and CUDA 6.0, respectively. The code is run on an Intel system, using
16 Xeon cores, model E5-2650 v2, running at 2.60GHz, each supporting 2-way hyper-
threading, and with a 32KB, 8-way associative private L1 instruction and data caches,
and a 20MB, 20-way associative shared last-level cache. The GPGPU is a GeForce GTX
780 Ti NVIDIA, with 3Gbytes of global memory, 2,880 cores running at 1.08GHz, and
1.5Mbytes of L2 cache. We use pine and valgrind to compute the instruction mixes
and the cache utilization of the multicore execution.

The benchmark is publicly available at https://github.com/HIPERFIT/finpar. Bi-
naries for the differently transformed versions of the same program can be easily
obtained (via make scripts), because versions either have their own (separate) C/OpenCL
implementation, such as the ALL and OUT versions of volatility calibration, or can be
simply derived by macro definitions, such as with the OpenCL version of option pricing.2

3. OPTION PRICING BENCHMARK

The presentation is organized as follows. Section 3.1 presents the main components
of option pricing and shows that the benchmark translates directly to a nested map-
reduce function composition, which expresses well the algorithmic structure and the
available parallelism. Sections 3.2 and 3.3 study some of the high-level invariants and
trade-offs that govern the optimization space, such as strength reduction and fusion.

Section 3.4 compares against an imperative setting: it identifies several key imper-
ative code patterns, such as scans, that would seriously hinder parallelism detection,
and it motivates the need for supporting loops with in-place updates and for performing
lower-level optimizations, such as memory coalescing. Section 3.5 discusses at a high
level how these optimizations can be supported in a functional language.

Finally, Section 3.6 presents an empirical evaluation that demonstrates the impact
of optimizations such as fusion, strength reduction, and memory coalescing, and shows
that “one size does not fit all”: the dataset-sensitive optimization space leads to several
low-level implementations exhibiting very different characteristics in terms of parallel
runtime, dynamic instruction mixes, memory footprint, and so forth.

3.1. Functional Basic Blocks of the Pricing Engine

Option contracts are among the most commonly exchanged instruments between fi-
nancial actors. They are formulated in terms of a set of (1) trigger conditions on

2Currently, options such as fusion/fission, memory coalescing, and Sobol strength reduction can be
(de)selected in file OptionPricing/includeC/Optimizations.h, but in general, please follow the README.md
instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:7

Fig. 3. Pricing engine: functional basic blocks and types (a) and code after fusion (b).

market events; (2) mathematical dependencies over a set of assets, named underlyings
of the contract; and (3) trigger dates: the time at which the insuring actor will reward
the option holder with a payoff, whose value depends on the temporal evolution of the
underlyings. Two key components are necessary for the appreciation, at the current
time, of the future value of the contract:

—A stochastic description of the underlyings, which allows exploring the space of
possible trigger events and payoff values, at the specified trigger dates. The parts of
this component are described in more detail in the remainder of this section.

—A technique to efficiently estimate the expected payoff by aggregating over
the stochastic exploration. This component uses the quasirandom Monte Carlo
method [Glasserman 2004], which, in simple terms, averages over a population of
prices obtained in the previous step by regular, equidistant sampling.

The function mcPricing in Figure 3(a) shows a map-reduce implementation of the
algorithm, the types of main components and the manner in which they are composed.
Its first two arguments denote the number of the contract that is to be priced and
the number of Monte Carlo iterations n to be used for pricing. In addition, integer
variables d, u, and m denote the number of trigger dates, underlyings, and market
scenarios, respectively, and are implicitly declared in the shape declaration of the other
array parameters.3 The result of mcPricing is a vector of size m (in R

m) containing the
presently estimated prices for the current contract in each of the m market scenarios.

The implementation of mcPricing translates directly to a nest of mathematical func-
tion compositions. The stochastic exploration proceeds by drawing samples from an
equi-probable, homogeneous distribution. This step could have been expressed simply
by (mapping) the independent-Sobol formula sobolIndR, which produces a pseudoran-
dom sequence of size u · d when applied to an integer in {1..n}. Instead, this is com-
mented (--) and replaced with a more efficient (and still parallel) implementation that
uses streamPar to compute a chunk of Sobol sequences at a time (see Section 3.2).

3The other (array) parameters of mcPricing are invariant to the stochastic exploration and are used in
various stages of the algorithm. For example, sob_bits denote the number of bits in the Sobol integer
representation, sob_dir_vcts are Sobol’s direction vectors, bb_data are parameters of the Brownian bridge,
and md_blsch and md_payof are the parameters of m market scenarios, such as volatility, discount, and so on.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:8 C. Andreetta et al.

The remaining code is at the outermost level a reduce ◦ map composition applied to
the array of n Sobol sequences sob_mat. The map corresponds to the rest of the stochastic
exploration and results in a matrix of prices. The reduce implements the Monte Carlo
aggregation by adding componentwise (map(+)) the n price vectors produced by the map.
The neutral element is a vector of m zeros, and the result belongs to R

m.
The implementation of the functional parameter of the (outermost) map is seman-

tically the composition of four functions. First, the uniform samples are mapped by
quantile-probability inversion [Wichura 1988] to normally distributed values, and they
are later used to model the value of each underlying at the trigger dates. This mapping
is performed by the function ugaussian, which has type [0, 1)u·d → R

u·d.
Second, since the market is assumed to present good liquidity and no discontinuities,

the underlyings are independently modeled as geometric Brownian motions [Black
and Scholes 1973]: continuous stochastic processes whose increments follow a log-
normal distribution. This step corresponds to the brownBridge call, which correlates
the input samples along the date dimension, independently for each underlying, to
impose the properties of the stochastic processes [Hull 2009] also on nonobserved
dates. It follows that the input vectors and the result are reshaped to u × d matrices
in which correlation is performed in each row.

Third, the inner maps estimate the contract price for each of the m market scenarios:

(1) To express the expected correlation among underlyings, blackScholes scales once
again the input samples via Cholesky composition by means of a positive-definite
correlation matrix [Watkins 1991], which is part of md_blsch.

(2) The obtained samples now mimic a (particular) market scenario and are provided
as input to the payoff function that calculates the future gain from the contract in
the current sample and the value of the aggregated future payoff at present time
via a suitable market discount model [Hull 2009].

(3) The obtained prices are divided by n such that the average will result by summation.

We conclude with two remarks. First, having precise array shape information is
fundamental for achieving efficient parallelization, as it enables, for example, hoisting
allocations outside recurrences and loop distribution (which require array expansion).
In this sense, previous work reported a slicing technique that infers (optimized) code
that computes precise shapes at all array creation points [Henriksen et al. 2014]. Sec-
ond, the functional notation borrows the expressiveness of Bird-Marteen’s formalism
for specifying parallelism and high-level invariants, which are discussed next.

3.2. Sobol Independent Versus Strength Reduction Formula Trade-Off

A Sobol sequence [Bratley and Fox 1988] is an example of a quasirandom sequence of
values [x0, x1, . . . , xn, . . .] from the unit hypercube [0, 1)s. Intuitively, this means that
any prefix of the sequence is guaranteed to contain a representative number of values
from any hyperbox

∏s
j=1[aj, bj), so the prefixes of the sequence can be used as successive

better-representative uniform samples of the unit hypercube (of discrepancy O(logs n
n)).

The Sobol algorithm for s = 1 starts by computing a number of direction vectors mk,
where each mk is a positive integer and there are as many ks as bits in the integer
representation (sob_bits). This step is not explained here because this computation is
not on the critical path (i.e., mk are computed once and used many times).

The ith Sobol number xi can be computed independently of the others with the
formula xi = ⊕

k≥0 B(i)k · mk, where B(i)k denotes the value of the kth bit of the canonical
bit representation of the positive integer i, and ⊕ denotes the exclusive-or operator. In
the preceding formula, one can use the reflected binary Gray code of i (instead of i),
which is computed by taking the exclusive-or of i with itself shifted one bit to the right.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:9

Fig. 4. Computing Sobol sequences in Futhark by independent (a) and strength-reduced (b) formulas.

Using Gray codes enables a strength reduction opportunity, which results in a recur-
rent, more efficient formula xi+1 = xi ⊕ mc for Sobol numbers, where c is the position of
the least significant zero bit of B(i). Finally, a Sobol sequence for s-dimensional values
can be constructed by s-ary zipping of Sobol sequences for one-dimensional values, but
it requires s sets of direction vectors (i.e., mi,k, where 0 ≤ i < s).

Figure 4(a) shows the sobolInd Futhark function that implements the Sobol inde-
pendent formula by mapping the formula for s = 1, denoted sobolInd1, on each of the s
direction vectors, denoted ms. Note that the implementation reveals two (extra) nested
levels of parallelism of sizes s and sob_bits=30, which can be easily exploited.

Figure 4(b) shows the function sobolChunk, which uses the strength-reduced (re-
current) formula to compute a chunk of Sobol sequences by applying the independent
formula to compute the first element of the chunk and amortizing this overhead by
using the efficient recurrent formula for the rest of the chunk. The implementation is
a scan ◦ map composition, in which the map computes the mc contributions and the scan
applies the recurrent formula to all elements in the chunk.

The trade-off refers to which formula to use for computing n consecutive Sobol num-
bers. The independent formula can simply be mapped, and hence it enables efficient
parallelization of depth O(1) but requires significantly more work than the recurrent
formula. The latter is computationally cheaper but requires a scan with the vectorized
xor operator, which exhibits less efficient parallelism of O(log n) depth.

An elegant solution that combines advantages was already shown in Figure 3(a):
streamPar is used to express the strong invariant that chunks of an arbitrary parti-
tioning of the [0..n-1] array can be processed in parallel (O(1) depth) via sobolChunk.
Thus, the chunk size is a free parameter that can be instantiated by the compiler to the
best-suited value, for example by generating two code versions that are discriminated
based on the value of data-sensitive input n, the Monte-Carlo space size.

If hardware parallelism approaches n, then choosing chunk size 1 would essentially
transform the streamPar call to a map with sobolInd, thus taking full advantage of the
efficient outer parallelism and providing opportunities to exploit inner parallelism.

Otherwise, the excess parallelism can be efficiently sequentialized via the recurrent
formula by using n/hwp as chunk size, where hwp accounts for hardware parallelism.

3.3. Fusion Versus Fission Trade-Off

The second high-level trade-off corresponds to two well-known invariants [Bird 1987].
Map-map fusion (fission) states that mapping the elements of an array with a function
and then the result with another function is equivalent to mapping the original array

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:10 C. Andreetta et al.

Fig. 5. Fusion rules: reduce ◦ streamPar ⇒ streamRed (a) and map ◦ scan ⇒ streamSeq (b).

with the composition of the two functions:

(map g) ◦ (map f) ≡ map(g ◦ f). (1)

The second invariant states that a map-reduce composition can be rewritten to an
equivalent form in which the input array is split into number-of-processor arrays of
equal sizes, on which each processor performs the original computation sequentially,
and finally, the local results are reduced in parallel:

(red ⊕ e) ◦ (map f) ≡ (red ⊕ e) ◦ (map ((red ⊕ e) ◦ (map f))) ◦ distp. (2)

For example, with the option pricing code in Figure 3(a)—but in which Sobol sequences
are computed by mapping the independent formula—the two outermost maps can be
fused by Equation (1) and the result can be fused with the reduce that performs
the Monte Carlo aggregation by Equation (2). However, the direction in which these
invariants should be applied to maximize performance is sensitive to the input dataset.

If the memory footprint of a fused iteration, proportional with u·d·m, fits in the GPGPU’s
fast memory and the outermost degree of parallelism is sufficient to fully utilize the
GPGPU, then (1) slow (global) memory accesses are eliminated from the critical path, and
hence (2) the execution behavior becomes compute rather than memory bound, and (3)
the memory consumption is reduced asymptotically (i.e., not proportional to n).

Otherwise, it is better to execute map and reduce as separate parallel operations and
furthermore to distribute the outer map across the composed functions (map fission).
This strategy (1) allows one to exploit more parallelism, such as the inner maps of degree
m in Figure 3(a) and the inner parallelism of each component, and (2) leads to simpler
kernels that exhibit less register pressure (and better hardware utilization).

Finally, Figure 3(b) shows that even when option pricing uses the efficient compu-
tation of Sobol sequences (i.e., the parallel stream with sobolChunk), the code is still
fused into a perfect nest formed by streamRed and streamSeq at outer and inner levels,
respectively. The parallel stream (streamRed) is obtained as the result of the outermost
SOAC composition reduce ◦ map ◦ streamPar: the map is fused first with the streamPar
resulting in a new streamPar SOAC, which is fused then with the reduce resulting in a
streamRed according to the fusion rule shown in Figure 5(a).

The outer-level fusion creates opportunities for fusing at an inner level: the sequen-
tial stream (streamSeq) appears due to the use of scan in sobolChunk, which is fused
with the subsequent map and reduce operators. For example, the rule for fusing a scan
with a map into a streamSeq is shown in Figure 5(b).

In essence, the fused program enables efficient sequentialization of the code: (1) the
outer streamRed enables the use of the cheaper Sobol recurrent formula and of a chunk
size that is tunable to the input dataset, and (2) the inner streamSeq, if its chunk size
is chosen 1, results in a loop whose memory footprint is proportional with u · d · m and
does not depend on the chunk size of the outer parallel stream streamRed (or n).

3.4. Comparison with the Imperative Setting

Figure 6 shows two of the many forms in which the scan primitive hides in imperative
dependent loops. The code on the left side, corresponding to the Sobol strength-reduced

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:11

Fig. 6. Two original code snippets hiding scan(map) operators.

Fig. 7. “Imperative”-like code for Brownian bridge: original (a) and optimized for memory coalescing (b).

formula, optimizes memory usage by recording in array sobol only the current ele-
ment of the scan. The previous iteration value is updated on line 6 in a reduction-like
statement (i.e., sobol=sobol⊕b), but the rest of the code uses sobol outside reduction
statements, which sequentializes the outer loop. The other pattern is demonstrated
in the code on the right side by the loop for(..k..) res[k,j]=res[k-1,j]⊕b (lines 4
through 7), which has a cross-iteration dependency of distance 1. Both patterns cor-
respond to scan(map) operators, which are difficult to recognize and further optimize
via subscript (dependence) analysis. However, in our higher-level context, the compiler
can produce more trivial outer-level parallelism by interchanging the scan and map by
the following rule:

scan (map ⊕) ≡ transpose ◦ map (scan ⊕) ◦ transpose,

which says that “scanning” with a vectorized operator is semantically equivalent to
mapping the scalar operator scan on the transposed matrix and transposing the result.

Furthermore, the original code presents other challenges to automatic paralleliza-
tion, such as privatizable arrays that are indexed by induction variables that are con-
ditionally incremented on only some of the loop’s paths and form nonaffine subscripts
that are difficult to analyze [Lin and Padua 2000; Oancea and Rauchwerger 2015].

However, there are code patterns and code transformations that are more suitably
expressed in imperative rather than functional notation. The first case corresponds
to dependent loops: Figure 7(a) shows a two-loop nest corresponding to the Brownian
bridge implementation, in which the outer loop is parallel (semantically a map) but the
inner loop is sequential—that is, each iteration computes a new element of res based on
two other elements of res computed in (statically unknown) previous iterations and ac-
cessed via indirect array inds. Although not infrequent, such loops with constant-time
array updates cannot be expressed purely functionally without resorting to sequential
monadic code. The second case refers to lower-level optimizations. For example, the
code in Figure 7(a) would result in noncoalesced access to global GPU memory because
one GPU thread would compute an entire row of the result matrix—that is, the threads
executing the same SIMD instruction would access memory references with a stride d,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:12 C. Andreetta et al.

the size of the row. The solution, shown in Figure 7(b) is to compute the transposed
result (resT) and similarly to transpose the input array (gaussT). The innermost index
of these arrays is now p, which is the index of the parallel loop and results in coalesced
access to global memory.

3.5. Optimizations Discussion

In essence, the reviewed optimizations seem to require a common ground between
higher- and lower-level program representations. On the one hand, exploiting the
higher-level semantics of parallel operators, such as streamPar, allows one to (1) design
a fusion/fission engine that seems to scale at program level [Henriksen and Oancea
2013], (2) achieve coalesced accesses via transposition, and (3) encode in the program
nontrivial (strength reduction) invariants. (Currently, all of these transformations are
supported in Futhark, the language inspired by this benchmark.) In comparison, the
validity of fusion/fission applied in a lower-level loop context requires sophisticated
index-based (polyhedral) analysis, which does not always scale well with the size of the
loop, and can be hindered by factors such as aliasing and flattened indices.

On the other hand, efficient execution of the sequential code often requires using
loops that update in-place the array’s elements of an array. This has motivated extend-
ing our language, Futhark, with support for in-place updates and normalized (do) loops.
For example, in-place updates are supported via a mechanism relying on uniqueness
types [Barendsen and Smetsers 1993; Henriksen 2014; Henriksen and Oancea 2013]
and provide the guarantee that updating an array’s element takes time proportional to
the size of the element (rather than of the array). Together, in-place updates and loops
allow (1) the user to efficiently write sequential code and (2) the compiler to efficiently
sequentialize the excess parallelism and to support various important optimizations,
such as hoisting and loop interchange and distribution.

3.6. Empirical Evaluation

The evaluation uses three datasets. The small dataset has parameters {n, u, d} =
{8388608, 1, 1}. In other words, it uses 8,388,608 Monte Carlo paths to evaluate a
vanilla-European call option, in which the payoff is the difference, if positive, between
the value of underlying Dj Euro Stoxx 50 at a certain trigger date and a constant strike.
A discrete barrier option is a contract with multiple trigger dates that forces the holder
to exercise the option before maturity, whenever the underlyings cross specific barrier
levels before one of the trigger dates. The medium dataset uses n = 1,048,576 paths to
evaluate a discrete barrier option over u = 3 underlyings, namely the indexes Dj Euro
Stoxx 50, Nikkei 225, and S&P 500, in which the payoff is a function of d = 5 trigger
dates. The large dataset uses n = 131,072 iterations to evaluate a barrier option that is
monitored daily (d = 367) and for which the payoff is conditioned on the barrier event
and the market values, at exercise time, of the mentioned u = 3 underlyings.

The top and bottom bar graphs in Figure 8 show speedup results for the GPGPU

and multicore-CPU execution, respectively. FUSE denotes the aggressively fused code
version, and VECT denotes the version in which the map corresponding to the Monte
Carlo iteration has been distributed. WOSR and WOMC denote the versions that do not use
the strength-reduced Sobol formula and memory coalescing optimizations, respectively.
CPU n denotes multicore execution on n ∈ {4, 8, 12, 16, 32} hardware threads.

Table I provides information related to the dynamic behavior (run on multicore CPU)
of the three program versions (fused, vectorized, and without strength reduction WOSR)
on the three datasets (small (sm), medium (md), and large (lg): the total number of
executed instructions (#Instr), the percentage of branches Br, memory reads Rd and
writes Wr, and the miss ratio M for reads and writes (and total RW) for the first level of

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:13

Fig. 8. Option pricing speedups for GPGPU and multicore execution. FUSE and VECT denote the fused and
distributed GPGPU code with all other optimizations on. WOSR and WOMC denote the absence of strength
reduction/memory-coalescing optimizations. CPU n denotes multicore execution on n hardware threads. The
uncertainty of the GPGPU runtime is between 0.1% and 0.7% of the runtime, with an average of 0.2%. The
uncertainty of the multicore runtime is between 0.1% and 1.9% of the runtime, with an average of 0.7%.

Table I. Dynamic Characteristics of Three Program Versions Run on Multicore (CPU)

PRGset #Instr. Br% Rd% Wr% RW% ML1
Rd% ML1

Wr% ML1
RW% MLL

Rd% MLL
Wr% MLL

RW% GMF

FUSEsm 7.30E08 7.9 30.5 7.8 38.3 0.00 0.00 0.00 0.00 0.00 0.00 4KB
VECTsm 8.80E08 11.4 36.6 17.5 54.2 1.11 0.97 1.06 0.22 0.50 0.31 64MB
WOSRsm 1.68E09 14.2 34.3 12.2 46.5 0.00 0.01 0.00 0.00 0.00 0.00 4KB
FUSEmd 1.57E09 7.3 30.1 5.0 35.1 0.00 0.01 0.00 0.00 0.00 0.00 2KB
VECTmd 2.67E09 11.6 32.7 17.6 50.3 2.80 5.73 3.63 0.22 0.57 0.32 120MB
WOSRmd 2.72E09 12.2 32.1 16.8 48.9 0.00 0.01 0.00 0.00 0.00 0.00 2KB
VECTlg 1.03E10 7.2 27.3 8.7 36.0 6.95 17.81 8.94 0.36 1.23 0.52 1.1GB
WOSRlg 1.05E10 7.2 27.6 8.4 36.0 7.56 19.13 9.44 0.34 1.34 0.50 1.1GB

Note: The three code versions correspond to the fused (FUSE), vectorized (VECT), and without strength reduction optimization (WOSR) programs that
are run on three datasets (i.e., small (sm), medium (md), and large (lg)). Columns 2 through 5 denote the total number of executed instructions
and the percentage of branch (Br), memory read (Rd), and write (Wr) instructions, respectively. Columns 6 through 11 denote the cache miss
ratio of reads (Rd), writes (Wr), and total (RW) for the first (L1) and last (LL) levels of cache, respectively. Finally, column 12 denotes the GPU

global memory footprint.

cache L1 and last level of cache LL, respectively. Finally, GMF is the GPGPU global memory
footprint.

Comparing the fused and vectorized code versions, one can observe that the fused
one executes on CPU (up to 1.7×) fewer instructions, exhibits a smaller percentage of
memory reads and (especially) writes, and generates fewer cache misses at all levels.

In essence, the GPGPU fused version yields superior speedup because as long as the
local arrays are small, they fit into the fast GPU memory, and global memory is not
accessed on the critical path (small footprint GMF). As the size of the local arrays
increases, each core consumes more of the sparse fast memory, resulting in a decreased
GPU utilization. The medium dataset seems to capture the sweet spot: from there on,
GPU VECT is winning, because its simpler kernels use fewer registers. Furthermore,
the fused version cannot execute the large dataset, because there is not enough fast
memory for each thread to hold 365 × 3 real numbers.

Comparing the fused with the version of the code that exclusively uses the indepen-
dent Sobol formula (WOSR) on the small and medium datasets, one can observe that,
as expected, strength reduction significantly decreases the dynamic-instruction count
(up to 2.3× smaller), decreases the number of reads/writes to memory, and results
in superior overall speedup. However, as the degree of parallelism decreases, so does
the size of the chunk that amortizes an independent formula against the execution of

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:14 C. Andreetta et al.

chunk-size recurrent formulas; it follows that on the large dataset, both the dynamic
characteristics and the speedup achieved by the vectorized versions of the code, with
and without strength reduction, are similar. Finally, memory coalescing is the most
impactful optimization, being responsible for a speedup factor in the 10 to 20× range.

The table on the right-hand side of Figure 8 provides additional insight. Although all
global memory accesses are coalesced, the (device-to-device) global memory bandwidth
of the vectorized version BWGPUVECT is suboptimal because the program is not memory bound.
For instance, the number of accesses to fast (shared and constant) memory is twice as
high as the number of global memory accesses. The highest bandwidth (for the large
dataset) corresponds to the lowest speedup; the fused version is not shown, as it does
not use global memory on the critical path, resulting in highest speedup.

Finally, the amount of memory transferred between device and host (D↔H Mem) is
small, in the hundreds of kilobytes range, because the whole computation is run on the
GPU. However, the overhead is not negligible, ranging from 10% to 0.6% of the runtime
of the small and large datasets, and is dominated by the overhead of the driver. In
other words, the runtime is not proportional to the size of the transfer.

4. LOCAL VOLATILITY CALIBRATION

The presentation is organized as follows. Section 4.1 briefly states the financial prob-
lem and sketches its mathematical solution. Sections 4.2 and 4.3 present the code
structure and the sequence of imperative transformations that are necessary to dis-
ambiguate and extract the algorithmic parallelism under a form that can be efficiently
exploited by the GPGPU hardware. At this stage, we identify several recurrences that
can be parallelized but are beyond the knowledge of the common user and introduce
(constant but) significant work overhead in comparison to the sequential code. Finally,
Section 4.4 shows parallel CPU and GPU runtimes and demonstrates the tradeoff between
efficient sequentialization and aggressive parallelization.

4.1. Financial and Mathematical Description

The pricing engine presented in Section 3 uses a Black-Scholes model and as such is
limited to cases where the volatility can be assumed constant. More complex cases,
such as when the contract has several payoff triggers, are more appropriately modeled
by imposing their (local) volatility as a function of both time and current level of
underlyings: σ (t, S(t)). In the following, we will focus on the case where the underlying
is an equity stock without dividends, modeled under the risk-neutral measure by

dS(t) = r(t)S(t)dt + σ (t, S(t))S(t)dW(t), (3)

with instant volatility σ (t, S(t)) and where r(t) is the risk-free rate and W(t) is a Wiener
process. The price function f : S × [0, T] → R, of a plain option on the preceding stock,
is a solution of the PDE:

∂ f
∂t

(x, t) + r(t)x
∂ f
∂x

(x, t) + 1
2

σ (x, t)2x2 ∂2 f
∂2x

(x, t) − r(t) f (x, t) = 0, (4)

f (x, T) = F(x), where (x, t) ∈ S × [0, T] and F : S → R, (5)
with terminal condition expressed in terms of the known function F, which represents
the payoff of the option at maturity. In the benchmark, the prices of a set of options
with different strikes are hereby determined for a given specification of the σ function.
Through this, one can heuristically calibrate the form and parameters of the σ function
that best matches the current option prices observed in the market.4 This section uses

4Standard practice is to compute local volatility more directly and faster by using the Dupire formula.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:15

Fig. 9. Explicit (a) and implicit (b) methods and original (c) and transformed (d) code structure.

the material and notation from Munk [2007] to briefly recount the main steps of solving
such an equation by a finite differences method [Crank and Nicolson 1947].

For simplicity, we discuss the case when S = R, but the benchmark uses a two-
dimensional space discretization (i.e., S = R

2). The PDE system is solved by numerically
approximating the solution with a sequence of difference equations, which are solved
by sequentially iterating over the time discretization. The iteration starts from the
known price F at time t = T and moves backward toward t = 0. Figure 9 shows two
methods that use the same difference formula to approximate the space derivatives but
differ in how the time-partial derivative is chosen. The latter seemingly minor change
results in very different algorithmic (work-depth) properties:

The explicit method, shown in Figure 9(a), approximates the time derivative back-
ward by D−

t f j,n = (f j,n − f j,n−1)/�t, where n ∈ 1..T and j ∈ 1..J correspond to the dis-
cretized time and space. The resulting equation f j,n−1 = α j,n f j−1,n + β j,n f j,n + γ j,n f j+1,n
directly computes the unknown values at time n − 1 from the values at time n. The
latter are known since we move backward in time: from T toward 0. Although the space
discretization can be efficiently, map-like, parallelized, the time series is inherently se-
quential by nature and results algorithmic depth because numerical stability requires
the time to be finely grained discretized (i.e., T much larger than J).

The implicit method, shown in Figure 9(b), uses a forward-difference approximation
for the time derivative, resulting in the equation f j,n+1 = aj,n f j−1,n +bj,n f j,n + c j,n f j+1,n,
which says that the known value at time n + 1 equals a linear combination of un-
known values at time n. The unknown values can be found by solving a tridiagonal
system of equations (TRIDAG). The advantage of the implicit method is that it does not
require particularly small timesteps, but the parallelization of the tridiagonal solver
is beyond the knowledge of the common user, albeit it is possible via scans with linear-
function composition and two-by-two matrix multiplication operators [Blelloch 1990],
as explained in the next section. Since the scan parallelism has depth O(log J) for one
time iteration, and the time and space discretization have comparable sizes, it follows
that the total depth improves to O(J log J) when compared to the explicit method’s
O(N), N � J. Finally, Crank-Nicolson combines the two approaches, does not require
particularly small timesteps, converges faster, and is more accurate than the implicit
method, albeit it still requires solving a tridiagonal system of equations.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:16 C. Andreetta et al.

4.2. Restructuring the Original Code for GPU Execution

Figure 9(c) shows the original structure of the code that implements volatility calibra-
tion in C pseudocode. The outermost loop of index k=0. . .U-1 solves Equation (4) for a set
of different strike prices. Here, the space is considered two dimensional, S = R

2, and
is traversed by loop indices i=0..M-1 and j=0..N-1, on the y- and x-axes, respectively.

The body of the loop implements the Crank-Nicolson method and is formed by two
loop nests. The first nest initializes array tmpRes in all points of the space discretization.
The second nest corresponds to the time series that starts from the terminal condition
in Equation (5) and moves toward time 0 (i.e., t=T-1. . .0). At each time point t, both
the explicit and implicit method are combined to compute a new result based on the
values obtained at previous time t+1. In the code, this is represented by reading all data
in tmpRes corresponding to time t+1 and later on updating tmpRes to the new result
of current time t. This read-write pattern creates a cross-iteration flow dependency
carried by the loop of index t, which shows the inherently sequential semantics of the
time series. As a final step, after time 1 is reached, some of the points of interest of the
space discretization are saved in array res (for each of the U loop iterations).

The remainder of this section describes the sequence of transformations that pre-
pares the original code for efficient GPGPU execution; the result is shown in Figure 9(d).

The first difficulty corresponds to the outermost loop of Figure 9(c), which is an-
notated as sequential. The reason is that the space of the two-dimensional array
tmpRes[M,N] is reused across the iterations of the outer loop, and as such, it generates
frequent dependencies of all kinds. (Note how easily imperative code may obfuscate
parallelism.)

In such cases, parallelism can be recovered by privatization: a code transformation
that semantically moves the declaration of a variable inside the target loop, thus
eliminating all dependencies, whenever it can be proven that any read from the variable
is covered by a previous write in the same iteration. In our case, all elements of tmpRes
are first written in the first nest and then are read and written in the time series
(second nest). It follows that it is safe to move the declaration of tmpRes inside the
outermost loop and to mark the latter as parallel. However, working with local arrays
is inconvenient for GPGPU code generation; hence, array expansion comes to the rescue:
the declaration of tmpRes is moved again outside the loop (to global memory), but it
receives an extra dimension of size equal to U , the outermost loop count.

The second difficulty relates to the GPGPU programming model thought to exploit
static rather than dynamic parallelism. In our context, static parallelism would corre-
spond to the structure of a perfect nest in which consecutive outer loops are parallel.
For example, after array privatization and expansion, the code offers significant nested
parallelism; however, for example, the outermost loop of count U and the inner loop of
count M cannot be both executed in parallel.5 Perfect nests can be manufactured with
two transformations: loop interchange and distribution. Although generally determin-
ing the legality of the transformations is nontrivial (e.g., using direction-vector based
dependence analysis), matters are simple for parallel loops: a parallel loop (1) can be
safely interchanged inward in a nest and (2) can be safely distributed across its state-
ments. Figure 9(d) shows the resulting code after applying several loop distribution
and interchange transformations:

5Although OpenCL and CUDA allow the user to express dynamic parallelism (device enqueue), the asso-
ciated overhead is difficult to quantify and can be significant [Wang and Yalamanchili 2014]. For example,
parent-child synchronization incurs significant runtime/memory footprint overhead, and the parent’s shared
memory is not visible in the child, and hence it needs to be transferred via global memory.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:17

Fig. 10. TRIDAG: Original code (a), code after distribution (b), parallelization of first recurrence (c).

(1) The outermost loop of index k is distributed across the enclosed initialization and
time-series loops. The initialization part now has the shape of a three-level perfect
nest having degree of parallelism U×M×N and thus allowing efficient GPU utilization.

(2) However, the degree of parallelism has not yet been improved for the second nest,
because the sequential time-series loop would separate the outermost and inner
parallel loops. This is overcome by interchanging the outermost and the time-series
loops.

(3) It is followed by distributing again the (former) outer loop of index k across the loop
nests denoting the explicit and implicit methods. This results in two GPU kernels,
of degree of parallelism U×M×N and U×M, which are executed inside the time-series
loop.

The third difficulty corresponds to memory coalescing, which is solved whenever
possible by interchanging loops or otherwise by transposing the “parallel” dimensions
of the array inward, as discussed at the end of Section 3.4.

4.3. Parallelization of the Tridiagonal Solver (TRIDAG)

One can observe in Figure 9(d) that the implicit-method loop nest offers only two
parallel loops that combine to a degree of parallelism equal to U×M, which might be too
small on some datasets. In such cases, TRIDAG parallelization may improve matters.

Figure 10(a) shows the pseudocode for an implementation of TRIDAG. Both loops are
sequential because the values of x[i] and y[i] in iteration i depend on the result of
iteration i-1—that is, x[i-1] and y[i-1]. However, they can be automatically trans-
formed to parallel code in four steps: (1) the local variable beta is forward substituted
in both recurrences of the first loop; then (2) the first loop is distributed across its
two remaining statements6 and (3) the resulting one-statement recurrences, shown in
Figure 10(b), are recognized as belonging to one of the “known” patterns, xi = ai+bi ·xi−1
or yi = ai + bi/yi−1; and finally, (4) the loops are replaced with parallel code.

For example, the recurrence yi = ai + bi/yi−1 can be brought to a parallel form by
(1) first performing the change of variable yi ← qi+1/qi, then (2) normalizing the
obtained equation resulting in qi+1 = ai · qi + bi · qi−1, then (3) adding a trivial equation
to form a system of two equations with two unknowns, which can be computed for all

6The legality of loop distribution in this case can be proven by “simple” direction-vector dependence analysis.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:18 C. Andreetta et al.

Table II. Dynamic Characteristics of Two Program Versions Run on Multicore (CPU)

PRGset #Instr. Br% Rd% Wr% RW% ML1
Rd% ML1

Wr% ML1
RW% MLL

Rd% MLL
Wr% MLL

RW% GMF

OUTsm 1.17E10 5.7 38.0 7.7 45.7 1.27 5.71 2.04 0.00 0.01 0.00 3.5MB
ALLsm 1.44E10 5.5 33.7 10.6 44.2 1.22 4.08 1.87 0.00 0.01 0.00 2.0MB
OUTmd 1.62E10 5.2 37.8 8.0 45.8 1.34 5.42 2.10 0.09 1.54 0.36 7.0MB
ALLmd 2.17E10 4.9 33.8 10.5 44.3 1.23 3.92 1.90 0.32 1.83 0.70 4.0MB
OUTlg 2.37E11 5.7 38.4 8.6 47.0 1.55 8.70 2.91 0.19 2.26 0.59 112MB
ALLlg 3.04E11 5.0 32.1 11.2 43.2 1.42 6.23 2.66 0.49 2.15 0.91 64MB

Note: OUT refers to the code version that uses the classical/sequential TRIDAG, and ALL refers to the one in which TRIDAG has been
rewritten as a combination of three scans and six maps (but which are executed sequentially). These are run on three datasets (small
(sm), medium (md) and large (lg)). Columns 2 through 5 denote the total number of executed instructions and the percentage of
branch (Br), memory read (Rd), and write (Wr) instructions, respectively. Columns 6 through 11 denote the cache miss ratio of reads
(Rd), writes (Wr), and total (RW) for the first (L1) and last (LL) levels of cache, respectively. Finally column 12 denotes the GPGPU

global memory footprint.

[qi+1, qi] vectors as a scan with a 2×2 matrix-multiplication (associative) operator:[
qi+1
qi

]
=

[
ai bi

1.0 0.0

] [
qi

qi−1

]
=

[
ai bi

1.0 0.0

]
∗

[
ai−1 bi−1
1.0 0.0

]
∗ . . . ∗

[
a1 b1
1.0 0.0

] [
b0
1.0

]
.

The corresponding parallel Futhark code is shown in Figure 10(c). Similarly, recurrence
xi = ai + bi ∗ xi−1 can be computed by a scan whose operator is a linear-function
composition operator (also associative). However, exploiting TRIDAG’s parallelism comes
at a cost: it requires six map operations and three scans, which, in comparison to
the sequential algorithm, exhibits significant (constant-factor) work overhead, both in
execution time and in terms of memory pressure. This overhead strongly hints that it
is preferable to sequentialize tridag if enough outer-level parallelism exists.

4.4. Empirical Evaluation

The evaluation uses three datasets. The small dataset has U×M×N×T= 16 × 32 × 256 ×
256, and it favors the aggressive approach that parallelizes TRIDAG. The medium dataset
has U×M×N×T= 128×32×256×64 and is intended to be a midpoint. The large dataset
has U×M×N×T= 256 × 256 × 256 × 64 and contains enough parallelism in the two outer
loops to utilize the hardware while enabling efficient sequentialization of TRIDAG.

Table II characterizes the dynamic behavior of the multicore code versions, denoted
OUT and ALL, which correspond to the classical TRIDAG implementation and the one that
has been rewritten to use (sequential) scans and maps. ALL executes up to 1.34× more
instructions; this overhead is smaller than expected because ALL was amenable to ag-
gressive vectorization. For example, the packed data-movement instructions MOVAPS,
MOVHPS, and MOVLPS account for approximately 14.6% of ALL’s instructions but only for
approximately 1.2% of OUT’s instructions. Additionally, ALL exhibits a higher percentage
of write and a lower percentage of read operations than OUT and provides better locality
for the first level of cache but slightly worse for the last level of cache. Finally, ALL’s
GPU global memory footprint (GMF) is 1.75× smaller than OUT because several interme-
diary arrays were stored in shared memory (this was possible because ALL exploits all
parallelism).

The top and bottom bar graphs in Figure 11(a) show speedup results for the GPU

and multicore execution, respectively. OUT and ALL denote the GPGPU code versions
that execute TRIDAG sequentially and in parallel, respectively. As expected, OUT is
significantly faster than ALL on the large dataset, where enough outer parallelism is
available, whereas ALL performs much better on the small dataset, where the other
method utilizes the hardware parallelism poorly. However, note that ALL uses an
efficient intrablock segmented scan, which exploits the knowledge that the values of
M and N are restricted to multiples of 32 less or equal to 256. The consequence is that a
scanned segment never crosses the kernel’s block boundaries, and ence scan executes

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:19

Fig. 11. Parallel speedup of local volatility calibration (a) and interest rate calibration (b). OUT and ALL
denote the GPGPU code versions that execute TRIDAG sequentially and in parallel, respectively. CPU n denotes
multicore execution on n hardware threads. The uncertainty of GPU runtime is between 0.2% and 1.3% of
the runtime, with an average of 0.7%. The uncertainty of multicore runtime is between 0.1% and 3.6% of the
runtime, with an average of 0.6%. The tables present additional information: (1) Seq Runtime denotes the
sequential CPU runtime in seconds; (2) TR OV OUT/ALL denotes the overhead of transposition as percentage
from the parallel runtime for the OUT and ALL code versions, respectively; (3) BWGPU denotes the global
memory bandwidth of the GPU program as percentage from optimal hardware bandwidth (288.4%); and
(4) H⇒D/D⇒H Mem denotes the amount of memory transferred from host to device and reverse, respectively
(runtime overhead less than 1% of runtime).

entirely in fast memory and is nested in the kernel code. A general segmented scan
implementation is less efficient. The multicore OpenMP version parallelizes only the
outermost loop, which for the small dataset has only 16 iterations and results in only
a 12× speedup on the 16 cores with two-way multithreading hardware.

Finally, the table in Figure 11(a) provides additional information related to the GPGPU

execution. First, the transposition overhead, which is necessary to obtain coalesced ac-
cess to global memory, ranges between around 7% and 25% of parallel runtime. Second,
the bandwidth utilization for global memory reaches 82.4% of the peak hardware band-
width for OUT on the large dataset. The other suboptimal values are either due to poor
utilization of parallelism or due to the fact that the application is not memory bound
(e.g., ALL versions aggressively utilize shared memory and use three scans). Third, the
total memory transfer between host and device is less than 1KB (negligible overhead).

5. INTEREST RATE MODEL

The presentation is organized as follows. Section 5.1 presents the motivation for model-
ing the interest rate quickly and accurately. Section 5.2 presents the main components
of a two-factor mean-reversion interest rate model and shows the top-level code struc-
ture. Finally, Section 5.3 discusses the difficulties raised by GPGPU parallelization and
presents an evaluation of the parallel multicore and GPGPU running times.

5.1. Financial Motivation

The interest rate is the premium paid by a borrower to a lender. It incorporates and
measures the market consensus on risk-free cost of capital, inflationary expectations,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:20 C. Andreetta et al.

and cost of transactions, and is used to valuate at present time the future payoff of a
given contract. Financial derivatives based on interest rates (e.g., swaps) are among
the largest groups of derivatives exchanged on the global markets [Hull 2009]. The
importance of interest rate models in financial computations has only increased with
recent regulatory dispositions such as Basel III [Basel Committee on Banking Super-
vision 2010], requiring financial institutions to report the value of financial portfolios
in different market scenarios. Before being employed, an interest rate model has to be
calibrated. Its parameters have to be estimated on the current market conditions so
that future scenarios evolve from an observed market state. It is therefore paramount
for financial institutions to choose an interest rate model that is fast to compute and a
calibration process that is accurate.

5.2. Financial Description

The interest rate calibration requires (1) an interest rate model, (2) a reference dataset
with data observed in the market, (3) a bounded parameter space, (4) an error function
measuring the divergence between the reference dataset and the output of a model
based on a specific set of parameters, and (5) a search strategy for the identification
of one or more optimal parameter sets. The short-rate model used here is the two-
additive-factor Gaussian model (G2++) [Brigo and Mercurio 2006]. This model offers
speed comparable to a single-factor model [Hull 2009], is more robust, and has been
shown to better capture market volatilities.

The G2++ model describes the short-term interest rate as a composition of two corre-
lated stochastic processes and a deterministic time-dependent function. The model has
five independent parameters param = (α, β, σ, η, ρ), which, once calibrated according
to the present market consensus, can be employed in valuations. The two Gaussian
processes are each described by a mean reversion constant (α, β) and a volatility term
(σ , η). The two Brownian motions are correlated by a constant factor ρ. At time t,
the interest rate rt can be expressed as rt = xt + yt + φt, with the stochastic processes
dxt = −αxtdt + σdW1

t and dyt = −βytdt + ηdW2
t correlated by ρdt = dW1

t dW2
t . The

third term, φt, is deterministic in time t, and the model will fit the discount factors
observed in the market, if φt satisfies the following equation, where f (0, T) denotes
the instantaneous forward rate at time 0 for the maturity T currently observed in the
market:

φT = f (0, T) + σ 2

2α2 (1 − e−αT)2 + η2

2β2 (1 − e−βT)2 + ρ
ση

αβ
(1 − e−αT)(1 − e−βT).

With the param tuple fitted to the current market, a stochastic interest rate profile
can be built for simulation of future scenarios. Additionally, an interest rate model
calibrated to a given market can be used to price other instruments in the same
market.

Our reference dataset, capturing the market consensus on the interest rate, consists
of 196 European swaption7 quotes, with constant swap frequency of 6 months and
maturity dates and swap terms ranging from 1 to 30 years. The calibration process
projects the dataset to one or more sets of param tuples. Since an inverse analytical
relation is not available, the calibration is a search over a continuous five-dimensional
parameter space. The parameter space is rugged so that minor updates in a param tuple
would produce quite different interest rate scenarios. For the search to be effective,

7A European interest rate swaption is a contract granting its owner the nonbinding right to enter into an
underlying swap with the issuer [Hull 2009]. This right is dependent on the level of the interest rate at the
expiration date of the swaption. A swap is an agreement between two counterparties to exchange future
cash flows, to reduce risk with the other party’s comparative advantage in a different capital market.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:21

Fig. 12. Code Structure of the top-level interest rate calibration (a) and its pricing component (b).

an efficient exploration of the parameter space is paramount, as well as a method
to quickly price market contracts according to the interest rate behavior dictated by
param. Figure 12(a) shows the top-level structure of the implementation.

As a search heuristic, the algorithm uses the Markov chain Monte Carlo differential
evolution (DE-MCMC)8 method [Storn and Price 1997; Braak 2006]. As in a genetic
algorithm, a population of P param tuples is randomly initialized within the continuous
parameter space at line 2, and the convergence loop at line 5 “evolves” the population
toward one that better fits the observed market prices. Each iteration builds a new
population at line 7 by either mutating or replacing part of the old population with
a recombination of surviving candidates. The speed of the search can be tuned with
the ratio between mutations and replacements, as well as with the amplitude of the
mutations.

The quality of each individual is measured by a fitness function π , implemented by
the unnamed-function parameter of the map at lines 9 through 16. For each candidate
param, all swaptions are priced according to the G2++ model (Chapter 4 in Brigo and
Mercurio [2006]) (lines 11 and 12), and then the map-reduce composition at lines 14
and 15 computes a total fitness score, which summarizes the differences between the
observed marked prices and the param-modeled prices. We do not describe the swaption
pricing and the fitness function in more detail here, but we mention that the heart of the
pricer involves the use of Brent’s root-finding method (Chapter 4 in Brent [1973]) and
the computation of an integral using the Gauss-Hermite quadrature technique [Steen
et al. 1969]. Finally, Markov chain selection is implemented at lines 17 and 18, where
the params of the new population are accepted or rejected by comparing their old and
new fitness scores. After convergence is reached, the fittest param is found and returned
at lines 21 through 23.

8DE-MCMC is a form of Bayesian analysis that allows to estimate both an optimal solution (returned by the
differential equation) and the amount of clusters of optimal solutions. The latter is important in a statistical
context.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:22 C. Andreetta et al.

Table III. Dynamic Characteristics Run on Multicore (CPU)

Dataset #Instr. Br% Rd% Wr% RW% ML1
Rd% ML1

Wr% ML1
RW% MLL

Rd% MLL
Wr% MLL

RW% GMF

Small 4.42E11 8.2 43.6 18.1 61.8 0.03 0.05 0.03 0.00 0.03 0.01 6.9MB
Medium 1.59E12 8.2 45.2 17.3 62.5 0.02 0.06 0.03 0.00 0.04 0.01 9.5MB

Note: Columns 2 through 5 denote the total number of executed instructions and the percentage of branch (Br), memory read
(Rd), and write (Wr) instructions, respectively. Columns 6 through 11 denote the cache miss ratio of reads (Rd), writes (Wr),
and total (RW) for the first (L1) and last (LL) levels of cache, respectively. Finally, column 12 denotes the GPGPU global memory
footprint.

5.3. Empirical Evaluation

The implementation depicted in Figure 12(a) reveals an outer level of balanced map
parallelism, such as the one that independently applies the fitness function π to each
of the P param tuples of the population at line 9. For front-office purposes, P typically
varies between 64 and 256, which is not enough to fully utilize the GPU, whereas a higher
P could be useful in risk control to cluster params in offline multiscenario analyses. The
next level of parallelism, corresponding to pricing each of the S=196 swaptions at
line 11, presents very unbalanced work. The swaption pricer, shown in Figure 12(b),
starts by computing a time discretization at line 2, whose size n_i is sensitive to
the current swaption and ranges between 2 and 60. Then it maps and reduces many
arrays of (irregular) size n_i within very nested/rich control flow (e.g., see the function
exactYhat). Sequentializing the pricer is not an option because of the prohibitive cost
of divergent execution on GPU. Flattening all parallelism [Blelloch et al. 1994] would
still be inefficient because (1) flattening the control flow would introduce many scatter-
gather operations, which are very expensive to compute on GPU (and tedious to write
by hand), and (2) because of the overhead of segmented versions of scan and reduce.

Our current implementation is a midpoint between the two approaches in that it
packs as many irregular arrays inside a GPU block as possible without crossing the
block boundaries and “turns-off” the remaining threads. This has the advantage that
it does not introduces scatter-gather operations and that the segmented reduces op-
erate entirely in local memory and does not exit to CPU, but the disadvantage of in-
troducing redundant computation and register pressure. The results for the parallel
GPGPU and multicore speedup were shown in Figure 11(b). Although in this case the
GPU execution is couple of times faster than the parallel CPU execution, the speedup is
significantly lower than the other two applications, and further optimization remains
an open challenge. Finally, Table III provides information related to the characteristics
of the multicore execution, which features about 8% and 62% of branch and memory
instructions, as well as good locality at both the first and last level of cache.

6. RELATED WORK

There are several strands of related work. First, a considerable amount of work has
targeted (1) the parallelization of financial computations on many-core hardware [Joshi
2010; Lee et al. 2010; Oancea et al. 2012]; (2) production integration in large banks’
IT infrastructure, such as for efficient, end-to-end pricing of exotic options [Nord and
Laure 2011]; or (3) integrating a contract-specification language [Bahr et al. 2015]
and dynamical graphical user interfaces [Elsman and Schack-Nielsen 2014] within
a language-heterogeneous financial framework using type-oriented techniques. Such
difficulties have been experienced in other compute-intensive areas as well, such as
in interoperating across computer-algebra systems, and have led to point-to-point but
ultimately nonscalable solutions [Chicha et al. 2004; Oancea and Watt 2005].

Our work differs in that we seek to express parallel patterns as high-level functional
constructs with the aim of systematically (and automatically) generating efficient par-
allel code. Futhark [Henriksen et al. 2014; Henriksen and Oancea 2013; Henriksen

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:23

2014] is an ongoing effort at providing an intermediate-language tool chain to which
production-level (functional) languages (e.g., APL) could be compiled.

Second, a large body of related work is concerned with autoparallelization of impera-
tive code. Such work includes static dependency analyses [Feautrier 1991; Pouchet et al.
2011; Lin and Padua 2000] for recognizing and extracting loop-level parallelism, as well
as for characterizing/improving memory access patterns [Elango et al. 2015]. Other
techniques may extract partial parallelism dynamically [Dang et al. 2002; Oancea
et al. 2005], but such techniques have not been evaluated (yet) on GPGPUs.

A third strand of related work covers techniques for achieving GPGPU high perfor-
mance [Ryoo et al. 2008], which involves achieving memory coalescing via block tiling,
optimizing register usage via loop unrolling, and performing data prefetching for hid-
ing memory latency. These techniques form the basis for application-specific hand-
optimized high-performance GPGPU code, written in language frameworks such as CUDA

or OPENCL, and for establishing high-performance GPGPU libraries such as Thrust [Bell
and Hoberock 2011]. Implementation of these principles as compiler optimizations
ranges from (1) heuristics based on pattern matching [Dubach et al. 2012; Ueng et al.
2008; Yang et al. 2010], over (2) more formal modeling of affine transformations via
the polyhedral model [Amini et al. 2011; Baskaran et al. 2010], to (3) aggressive tech-
niques, such as loop collapsing, that may be applicable even for irregular control flow
and memory access patterns [Lee et al. 2009].

A large body of related work includes DSLs for programming many-core systems,
which are either embedded in Haskell, such as Nikola [Mainland and Morrisett 2010],
Accelerate [Chakravarty et al. 2011], Obsidian [Claessen et al. 2012], and SPL [Flænø
Werk et al. 2012], or stand-alone, as in SAC [Grelck and Scholz 2006; Guo et al. 2011].
Such solutions do not typically support nested parallelism.

Also related to the present work is the work on array languages in general (including
APL [Iverson 1962] and its derivatives) and the work on capturing the essential math-
ematical algebraic aspects of array programming [Hains and Mullin 1993] and list
programming [Bird 1987] for functional parallelization. Compilers for array languages
also depend on inferring shape information either dynamically or statically [Elsman
and Dybdal 2014], although they can often assume that the arrays operated on are
regular, which is not the case for Futhark programs.

A scalable technique for targeting parallel architectures in the presence of nested
parallelism is to apply Blelloch’s flattening transformation [Blelloch 1996]. Blelloch’s
technique has also been applied in the context of compiling NESL [Bergstrom and Reppy
2012] but is sometimes incurring a drastic memory overhead. In an attempt at coping
with this issue and for processing large data streams while still making use of all
available parallelism, a streaming version of NESL, called SNESL, has been developed
[Madsen and Filinski 2013], which supports a stream data type for which data can be
processed in chunks and for which the cost model is explicit.

A final strand of related work is the work on benchmark suites, particularly for
testing and verifying performance of hardware components and software tools. An
important benchmark suite for testing accelerated hardware such as GPGPUs and their
related software tool chains is the SPEC ACCEL benchmark [Standard Performance Evalu-
ation Corporation 2014] provided by the Standard Performance Evaluation Committee
(SPEC). Compared to the present work, the SPEC ACCEL benchmark contains few, if any,
applications related to the financial domain, and further, the goal of the SPEC ACCEL

benchmark is not to demonstrate that different utilization of parallelism can be appro-
priate for different input datasets. Finally, Joshi et al. [2006] present a methodology
for clustering programs based on the similarity of their inherent characteristics, such
as dynamic instruction mix, register dependency distance (as a measure of ILP), and
spatial and temporal locality. We note that each of our three benchmarks is likely to be

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:24 C. Andreetta et al.

in a different equivalence class of programs, as they exhibit a very different dynamic
mix of instructions and LL1 miss ratio. This extends even to variants of the same
benchmark, as in the case of option pricing’s FUSE and VECT versions.

7. CONCLUSION AND FUTURE WORK

This article has presented three real-life financial applications that constitute a chal-
lenging and compelling application for optimizing compilers because they exhibit a
rich, data-sensitive optimization space whose manual exploration is simply too tedious.
We have demonstrated how parallelism and related invariants can be expressed in a
generic functional notation, and how various trade-offs can be exploited by high-level
code transformations, which ultimately result in low-level code versions that exhibit
very different runtime behaviors, albeit each of them is better suited on a certain class
of datasets. Finally, empirical measurements have demonstrated the feasibility of the
proposed transformations, the trade-offs, and the difficulties.

REFERENCES

Mehdi Amini, Fabien Coelho, Francois Irigoin, and Ronan Keryell. 2011. Static compilation analysis for host-
accelerator communication optimization. In Proceedings of the Conference on Languages and Compilers
for Parallel Computing (LCPC’11). 237–251.

Patrick Bahr, Jost Berthold, and Martin Elsman. 2015. Certified symbolic management of financial multi-
party contracts. In Proceedings of the ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’15).

Erik Barendsen and Sjaak Smetsers. 1993. Conventional and uniqueness typing in graph rewrite systems.
In Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer
Science, Vol. 761. Springer, 41–51.

Basel Committee on Banking Supervision. 2010. Basel III: A Global Regulatory Framework for More Resilient
Banks and Banking Systems. Bank for International Settlements, Basel, Switzerland.

M. M. Baskaran, J. Ramanujam, and P. Sadayappan. 2010. Automatic C-to-CUDA code generation for affine
programs. In Proceedings of the International Conference on Compiler Construction (CC’10). 244–263.

Nathan Bell and Jared Hoberock. 2011. Thrust: A productivity-oriented library for CUDA. In GPU Comput-
ing Gems Jade Edition, W.-M. W. Hwu (Ed.). Morgan Kaufmann, San Francisco, CA.

Lars Bergstrom and John Reppy. 2012. Nested data-parallelism on the GPU. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming (ICFP’12). 247–258.

R. S. Bird. 1987. An introduction to the theory of lists. In Proceedings of the NATO Advanced Study on Logic
of Programming and Calculi of Discrete Design. 5–42.

F. Black and M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy
81, 3, 637–654.

Guy Blelloch. 1996. Programming parallel algorithms. Communications of the ACM 39, 3, 85–97.
Guy E. Blelloch. 1989. Scans as primitive parallel operations. IEEE Transactions on Computers 38, 11,

1526–1538.
Guy E. Blelloch. 1990. Prefix Sums and Their Applications. Carnegie Mellon University, Pittsburgh, PA.
Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha Chatterjee. 1994. Im-

plementation of a portable nested data-parallel language. Journal of Parallel and Distributed Computing
21, 1, 4–14.

Cajo J. Braak. 2006. A Markov chain Monte Carlo version of the genetic algorithm differential evolution:
Easy Bayesian computing for real parameter spaces. Statistics and Computing 16, 3, 239–249.

Paul Bratley and Bennett L. Fox. 1988. Algorithm 659 implementing Sobol’s quasirandom sequence gener-
ator. ACM Transactions on Mathematical Software 14, 1, 88–100.

Richard P. Brent. 1973. Algorithms for Minimization without Derivatives. Prentice Hall.
Damiano Brigo and Fabio Mercurio. 2006. Interest Rate Models—Theory and Practice: With Smile, Inflation

and Credit (2nd ed.). Springer.
Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accel-

erating Haskell array codes with multicore GPUs. In Proceedings of the 6th Workshop on Aspects of
Multicore Programming (DAMP’11). 3–14.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

FinPar: A Parallel Financial Benchmark 18:25

Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. 2004. Parametric polymorphism for computer algebra soft-
ware components. In Proceedings of the International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing. 119–130.

Koen Claessen, Mary Sheeran, and Bo Joel Svensson. 2012. Expressive array constructs in an embedded
GPU kernel programming language. In Proceedings of the 7th Workshop on Declarative Aspects and
Applications of Multicore Programming (DAMP’12). 21–30.

J. Crank and P. Nicolson. 1947. A practical method for numerical evaluation of solutions of partial differential
equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society
43, 1, 50–67.

Francis Dang, Hao Yu, and Lawrence Rauchwerger. 2002. The R-LRPD test: Speculative parallelization of
partially parallel loops. In Proceedings of the International Parallel and Distributed Processing Sympo-
sium (PDPS’02). 20–29.

Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J. Fink. 2012. Compiling a
high-level language for GPUs. In Proceedings of the International Conference on Programming Language
Design and Implementation (PLDI’12). 1–12.

Daniel Egloff. 2011. Pricing financial derivatives with high performance finite difference solvers on GPUs.
In GPU Computing Gems Jade Edition, W.-M. W. Hwu (Ed.). Morgan Kaufmann, San Francisco, CA,
309–322.

V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan. 2015. On characterizing the data
access complexity of programs. In Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’15). ACM, New York, NY, 567–580.

Martin Elsman and Martin Dybdal. 2014. Compiling a subset of APL into a typed intermediate language.
In Proceedings of the 1st International Workshop on Libraries, Languages, and Compilers for Array
Programming (ARRAY’14). ACM, New York, NY.

Martin Elsman and Anders Schack-Nielsen. 2014. Typelets—a rule-based evaluation model for dynamic,
statically typed user interfaces. In Proceedings of the International Symposium on Practical Aspects of
Declarative Languages (PADL’14).

Paul Feautrier. 1991. Dataflow analysis of array and scalar references. International Journal of Parallel
Programming 20, 1, 23–54.

Michael Flænø Werk, Joakim Ahnfelt-Rønne, and Ken Friis Larsen. 2012. An embedded DSL for stochastic
processes: Research article. In Proceedings of the 1st ACM SIGPLAN Workshop on Functional High-
Performance Computing (FHPC’12). ACM, New York, NY, 93–102.

M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. H. J. Kelly. 2011. Performance analysis and optimi-
sation of the OP2 framework on many-core architectures. ACM SIGMETRICS Performance Evaluation
Review 38, 4, 9–15.

Paul Glasserman. 2004. Monte Carlo Methods in Financial Engineering. Springer, New York, NY.
Clemens Grelck and Sven-Bodo Scholz. 2006. SAC: A functional array language for efficient multithreaded

execution. International Journal of Parallel Programming 34, 4, 383–427.
Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. 2011. Breaking the GPU programming barrier

with the auto-parallelising SAC compiler. In Proceedings of the 6th Workshop on Declarative Aspects of
Multicore Programming (DAMP’11). ACM, New York, NY, 15–24.

G. Hains and L. M. R. Mullin. 1993. Parallel functional programming with arrays. Computer Journal 36, 3,
238–245.

Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S. Lam. 2005. Interpro-
cedural parallelization analysis in SUIF. ACM Transactions on Programming Languages and Systems.
27, 4, 662–731.

Troels Henriksen. 2014. Exploiting Functional Invariants to Optimise Parallelism: A Dataflow Approach.
Master’s Thesis. DIKU, Copenhagen, Denmark.

Troels Henriksen, Martin Elsman, and Cosmin Eugen Oancea. 2014. Size slicing—a hybrid approach to
size inference in Futhark. In Proceedings of the 3rd ACM SIGPLAN Workshop on Functional High-
Performance Computing (FHPC’14). ACM, New York, NY, 31–42.

Troels Henriksen and Cosmin Eugen Oancea. 2013. A T2 graph-reduction approach to fusion. In Proceedings
of the 2nd ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC’13). ACM, New
York, NY, 47–58.

Troels Henriksen and Cosmin Eugen Oancea. 2014. Bounds checking: An instance of hybrid analysis. In
Proceedings of the ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for
Array Programming (ARRAY’14). ACM, New York, NY, 88.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

18:26 C. Andreetta et al.

Roger W. Hockney. 1965. A fast direct solution of Poisson’s equation using Fourier analysis. Journal of the
ACM 12, 1, 95–113.

J. Hull. 2009. Options, Futures and Other Derivatives. Prentice Hall.
Kenneth E. Iverson. 1962. A Programming Language. John Wiley & Sons.
Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy Kurian John. 2006. Measuring benchmark

similarity using inherent program characteristics. IEEE Transactios on Computers 6, 769–782.
M. S. Joshi. 2010. Graphical Asian options. Wilmott Journal 2, 2, 97–107.
Hee-Seok Kim, Shengzhao Wu, Li-Wen Chang, and Wen-Mei W. Hwu. 2011. A scalable tridiagonal solver

for GPUs. In Proceedings of the International Conference on Parallel Processing (ICPP’11). IEEE, Los
Alamitos, CA, 444–453.

A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes. 2010. On the utility of graphics cards to per-
form massively parallel simulation of advanced Monte Carlo methods. Journal of Computational and
Graphical Statistics 19, 4, 769–789.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. 2009. OpenMP to GPGPU: A compiler framework
for automatic translation and optimization. In Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’09). 101–110.

Yuan Lin and David Padua. 2000. Analysis of irregular single-indexed arrays and its applications in compiler
optimizations. In Proceedings of the International Conference on Compiler Construction. 202–218.

Frederik M. Madsen and Andrzej Filinski. 2013. Towards a streaming model for nested data parallelism. In
Proceedings of the 2nd ACM SIGPLAN Workshop on Functional High-Performance Computing.

Geoffrey Mainland and Greg Morrisett. 2010. Nikola: Embedding compiled GPU functions in Haskell. In
Proceedings of the 3rd ACM International Symposium on Haskell. 67–78.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. 1997. The Definition of Standard ML
(Revised). MIT Press, Cambridge, MA.

Claus Munk. 2007. Introduction to the Numerical Solution of Partial Differential Equations in Finance.
Retrieved May 10, 2016, from http://mit.econ.au.dk/vip_htm/cmunk/noter/pdenote.pdf.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2014. Deterministic Galois: On-demand, portable
and parameterless. In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’14).

Fredrik Nord and Erwin Laure. 2011. Monte Carlo option pricing with graphics processing units. In Pro-
ceedings of the International Conference on Parallel Computing (ParCo’11).

Cosmin Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz Henglein. 2012. Financial
software on GPUs: Between Haskell and Fortran. In Proceedings of the Workshop on Functional High-
Performance Computing (FHPC’12). ACM, New York, NY, 61–72.

Cosmin E. Oancea and Lawrence Rauchwerger. 2015. Scalable conditional induction variable (CIV) analysis.
In Proceedings of the International Symposium on Code Generation and Optimization (CGO’15).

Cosmin E. Oancea, Jason W. A. Selby, Mark Giesbrecht, and Stephen M. Watt. 2005. Distributed models
of thread level speculation. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’05), Vol. 5. 920–927.

C. E. Oancea and S. M. Watt. 2005. Domains and expressions: An interface between two approaches to
computer algebra. In Proceedings of the 2005 International Symposium on Symbolic and Algebraic
Computation (ISSAC’05). ACM, New York, NY, 261–269.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, P. Sadayappan, and N. Vasilache.
2011. Loop transformations: Convexity, pruning and optimization. In Proceedings of the 38th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’11). ACM, New York,
NY, 549–562.

James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism.
O’Reilly Media.

Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-Mei W.
Hwu. 2008. Optimization principles and application performance evaluation of a multithreaded GPU
using CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’08). 73–82.

Standard Performance Evaluation Corporation. 2014. SPEC ACCEL. Retrieved May 10, 2016, from https://
www.spec.org/accel/.

N. M. Steen, G. D. Byrne, and E. M. Gelbard. 1969. Gaussian quadratures for the integrals∫ ∞
0 exp(−x2) f (x)dx and

∫ b
0 exp(−x2) f (x)dx. Mathematics of Computation 23, 661–671.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

https://www.spec.org/accel/.
https://www.spec.org/accel/.

FinPar: A Parallel Financial Benchmark 18:27

Rainer Storn and Kenneth Price. 1997. Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11, 4, 341–359.

Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W. Hwu. 2008. CUDA-lite: Reducing
GPU programming complexity. In Proceedings of the 21st International Workshop on Languages and
Compilers for Parallel Computing (LCPC’08). 1–15.

Jin Wang and Sudhakar Yalamanchili. 2014. Characterization and analysis of dynamic parallelism in un-
structured GPU applications. In Proceedings of the IEEE International Symposium on Workload Char-
acterization (IISWC’14). 51–60.

David Watkins. 1991. Fundamentals of Matrix Computations. Wiley, New York, NY.
M. J. Wichura. 1988. Algorithm AS 241: The percentage points of the normal distribution. Journal of the

Royal Statistical Society: Series C (Applied Statistics) 37, 3, 477–484.
Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU compiler for memory optimization

and parallelism management. In Proceedings of the ACM SIGPLAN 2010 Conference on Programming
Language Design and Implementation (PLDI’10). 86–97.

Received August 2015; revised February 2016; accepted February 2016

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 2, Article 18, Publication date: June 2016.

