A Framework for Cut-Off Incremental Recompilation
and Inter-Module Optimization

Martin Elsman

IT University of Copenhagen, Denmark
mael@itu.dk

Abstract

In this paper we present a cut-off incremental recompilation frame-
work that supports inter-module optimization. The framework al-
lows arbitrary compile time information to propagate across pro-
gram unit boundaries, in such a way that it can be determined if
compilation assumptions have changed since the program unit was
last compiled.

The abstract presentation of the framework makes explicit the
assumptions of the approach and specifies exactly the set of oper-
ations necessary for each of the translation phases in a compiler
(from parsing to abstract syntax, through a series of intermediate
languages, and eventually down to machine code). The correctness
results shown are non-trivial due to the flexibility of the framework,
which allows even open terms (objects containing free occurrences
of names) to propagate across program unit boundaries at compile
time.

The framework is based on a language for programming in the
very large, which allows for expressing precise program unit depen-
dencies. Moreover, framework is batch-based in the sense that only
one source file is compiled for each invocation of the compiler. The
scheme is applied in the MLKit Standard ML compiler and exper-
iments show that the approach is feasible and that it scales to very
large programs and day-to-day program development for programs
consisting of more than 250.000 lines of Standard ML.

Categories and Subject Descriptors D.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory—Semantics

Keywords Separate compilation, Inter-module optimization, Se-
rialization, Standard ML

1. Introduction

Modularity arose from the need to divide programs into program
units for separate compilation. Since then, the concept of modular-
ity has become a key element of modern software engineering, cov-
ering name space management and abstraction mechanisms, such
as parametric modules, class mechanisms, and abstract types. As
software projects get larger, programming language support for
modularity becomes more and more important for software devel-
opment, for software maintenance, and for software reuse. On the

Copyright (© 2008, Martin Elsman, IT University of Copenhagen, Denmark. All
rights reserved. Reproduction of all or part of this work is permitted for educational
or research use on condition that this copyright notice is included in any copy.

IT University of Copenhagen Technical Report. April 2008.

other hand, only rarely does modularity come for free; when a pro-
gram unit is compiled, many programming language systems im-
pose a restriction to what information is available to the compiler
about identifiers declared in other program units [11]. Such restric-
tions may limit what optimizations are performed across program
unit boundaries, which again may encourage programmers to avoid
modularization and abstraction mechanisms to enable classical op-
timizations such as function in-lining, function specialization and
constant propagation [2], and newer optimizations and analyses,
such as function fusion [24] and region inference [30, 33].

Most programming language systems provide a way of pro-
gramming in the very large, either through the use of make [19] or
through a more system specific make-like facility. The framework
we present here is based on ML Basis files [12], a language used in
the whole-program optimizing Standard ML compiler MLton [12]
and in the MLKit [32, 31] for expressing dependencies between
source files.

The framework exists independently of the source language and
imposes little restrictions on what information may be propagated
across program unit boundaries. We call the kind of recompilation
provided by the framework for cut-off incremental recompilation
because program units managed by the framework are compiled
incrementally (i.e., a program unit may be compiled only when
the program units on which it depends have been compiled) and
because a program unit need not necessarily be recompiled if other
program units, on which it depends, are modified. The framework
is based both on properties of the source language and on properties
of each translation step in the compiler. An important property
of the framework is that it may coexist with a module language;
thus, the framework does not compromise software engineering
principles.

1.1 Contributions

The main contributions of this paper are the following:

e A theoretical foundation for a cut-off incremental recompila-
tion framework that allows propagation of compile time infor-
mation across program unit boundaries, enabling inter-module
optimization. The abstract presentation of the framework spec-
ifies exactly the set of operations necessary for each of the
translation phases in a compiler, which provides the compiler
writer with a clear interface for plugging in additional compi-
lation phases and optimizations. Correctness of the approach is
non-trivial due to the flexibility of the framework, which allows
even open terms (objects containing free occurrences of names)
to propagate across program unit boundaries.

A description of how the theoretical foundations are used in
a practical (re)compilation framework for the MLKit Standard
ML compiler.

e Measurements showing that the (re)compilation framework is
feasible in practice and that it enables optimizations that are not
possible with traditional recompilation systems.

1.2 Outline

In Section 1.3, we first give an overview of related work. Then in
Section 2, we give a short introduction to ML Basis (MLB) com-
pilation management and describe how it works well together with
inter-module optimization and cut-off incremental recompilation.

In Section 3, we develop the foundations for cut-off incremental
recompilation management. Based on a notion of a translation
phase and properties that must hold for each translation phase in a
compiler, we define the concept of compilation as the composition
of a series of translation phases. Moreover, we demonstrate some
important properties of compilation based on the properties of each
compilation phase.

We develop the concept of MLB (re)compilation management
in two steps, based on the notion of compilation. First, in Section 4,
we present a set of MLB compilation inference rules that closely
resembles the MLB static semantics developed in [12] for Standard
ML.

Second, in Section 5, we introduce the concepts of repository
and dependency maps for presenting a set of inference rules for
MLB recompilation management. We show that the compilation
and recompilation semantics are related in a particular sense and
that, with respect to so-called well-formed repositories, recompila-
tion is sound and complete. An important property of the recom-
pilation semantics is that an implementation based on a simple de-
pendency analysis and serialization of compilation bases to disk
can follow the semantics closely. To simplify the presentation, we
make the assumption in Section 5 that MLB files are self-contained,
that is, that they do not contain references to other MLB files.

In Section 6, we describe how the framework is instantiated to
the context of Standard ML and a particular Standard ML compiler,
namely the MLKit [32], which allows compilation information to
migrate across compilation unit boundaries at compile time. We
also present solutions to some scalability problems incurred by the
framework and present experimental evidence that the framework
scales to large programs, even in settings that deploy extensive
inter-module optimizations.

Finally, in Section 7, we describe future work and conclude.

1.3 Related Work

ML modules and other high-level language constructs, such as
classes, allow for programming in the large, but cannot be used to
express how source files of a system are combined. In particular, a
programmer cannot within the language specify source file depen-
dencies, which could allow the programmer to reason about soft-
ware components (groups of source files) for programming in the
very large. In the context of Standard ML, different ML compilers
support their own take on these issues. For instance, the SML/NJ
team has developed the concept of CM files [8, 9], the MLKit team
has developed the concept of PM files [14, 32], and for Moscow
ML, the mosmake tool was developed [21]. Recently, the MLton
team has developed the concept of ML Basis files [12], an exten-
sion of the PM files supported by earlier versions of the MLKit.
Each of these tools allows the programmer to specify how source
files should be grouped together to form a complete program or
library.

Various recompilation schemes have been investigated ranging
from smart recompilation [29, 1] to Shao and Appel’s smartest
recompilation scheme [27]. Smart recompilation has the property
that a program unit must be recompiled whenever (1) its own
implementation changes, or (2) an interface changes upon which
the program unit depends. Shao and Appel’s scheme uses type

$(SML_LIB) /basis/basis.mlb A

local A.sml XZ% Z; z g
in basis b = / \
bas B.sml end B - C -
basis ¢ = val bl = val cl =
al+2 a2+1
bas C.sml end
o \ ; T d1 /
va. =
gpenlb ¢ bi+cl
.sm
(a) (b)

Figure 1. Example ML Basis File (a) and corresponding depen-
dency graph (b) with embedded ML source code.

inference to infer types for undeclared identifiers of a program
unit, which leads to the property that a program unit needs not be
recompiled unless its own implementation changes.

Frameworks for separate compilation that allow a program unit
to be compiled, based on interfaces provided by the programmer,
support cut-off (or true) separate compilation. Lately, Swasey et al.
[28] have proposed a language extension for Standard ML so as to
support true separate compilation. The proposal extends Standard
ML with the possibility of specifying functor signatures, which al-
lows for separate compilation of program units that refer to functors
declared in other program units. Whereas the language extensions
of the proposal do not conflict with the framework we present here,
the proposal of Swasey et al. does not provide separate compilation
for implementations of Standard ML that critically depend on prop-
agating information other than language-level types across program
unit boundaries. Also, the work by Swasey et al. does not focus on
avoiding unnecessary recompilation in cases where module inter-
faces are not provided by a programmer.

Also closely related to the present work is Blume’s work on
hierarchical modularity [9, 10] in the context of the CM compila-
tion management system for SML/NJ [8]. Blume’s work does not
allow arbitrary symbol table information to propagate across pro-
gram unit boundaries at compile time. CM makes use of a program
analysis to compute dependencies between source files, which is
not required in the case of ML Basis files where source file depen-
dencies are made explicit.

Also related to our work, Ancona et al. have investigated re-
compilation and separate compilation techniques for Java-like lan-
guages [3, 4, 5], but with little focus on inter-module optimization.

Finally, there is a large body of related work on frameworks
for whole-program optimizations (e.g., [34]) and whole-program
compilation (e.g., [35]). Contrary to the focus of this large body of
related work, our work focuses on avoiding unnecessary recompila-
tion in the presence of inter-module optimization and inter-module
program analyses.

2. ML Basis Files

To motivate the use of ML Basis Files to specify dependencies
between program units, consider the MLB file in Figure 1(a). This
MLB file illustrates various aspects of MLB files. The first line
illustrates that it is possible to “load” the basis corresponding to
another ML Basis file. In this case, the Standard ML Basis Library
is loaded, which in effect is made available to all source files
mentioned in the MLB file. (The path variable $ (SML_LIB) is used
to refer to libraries in a platform independent way.) The MLB file
also mentions four source files A (i.e., A.sml), B, C, and D, and
two basis identifiers b and c. Notice how the local declaration
of A is used to specify that B is compiled in the basis resulting
from compiling A and that the MLB basis bindings are used to
specity that also C is compiled in the basis resulting from compiling

A. Using the open construct, the resulting bases from compiling B
and C are made available for compiling D. In this respect, the MLB
file expresses dependencies between the source files A, B, C, and
D, according to the diagram in Figure 1(b), where arrows indicate
dependencies. Thus B and C depend on A, and D depends on B and C.
This example illustrates some of the flexibilities of MLB files and
how MLB files allow for expressing precise dependencies between
source files in terms of the underlying directed acyclic dependency
graph.

For illustrating various recompilation scenarios, we consider the
example in Figure 1, where source files contain simple ML decla-
rations; all the points we make here carry over to more advanced
language constructs such as ML structures, signatures, and func-
tors. When the entire program is compiled, each source file has
been compiled into object code that may be linked together and
executed, resulting in d1 evaluating to the value 17.

Consider now the effect of modifying the variable binding of
al in source file A to “val al = 4”. Further, assume that only
simple type information (such as: al has type int) is propagated
across program unit boundaries at compile time. Due to the source
file modification, source file A needs to be recompiled. But due to
unchanging compilation assumptions, none of the program units B,
C, and D needs to be recompiled. On the other hand, consider the
same change in a compiler that features inter-module constant-
propagation. By recording constant-propagation information in
compilation bases, the assumptions under which source file B is
to be compiled have changed, thus recompiling B under the new
assumptions is necessary. Moreover, although C needs not be re-
compiled (restricted to the free identifiers of the source file, the
assumptions under which it is compiled have not changed), pro-
gram unit D does need to be recompiled, because the assumptions
stemming from compiling B has changed.

A somewhat simpler example of an MLB file is a list of source
files preceded by a reference to the MLB file representing the Stan-
dard ML Basis Library. The meaning of such an MLB file is equiv-
alent to the meaning of the program obtained by concatenating all
source files (in order), including the source files implementing the
Standard ML Basis Library.

Notice that the concept of MLB files serves several purposes.
First, MLB files can be seen as a crude way of extending the Stan-
dard ML module language, for providing better support for group-
ing together signatures, structures, and functors (Standard ML has
no support for including functors and signatures in structures). Sec-
ond, MLB files link the Standard ML module language (and the
Core language, for that matter) to the file system and make explicit
the dependencies between source files. It is this latter property of
MLB files that is our focus in this work.

2.1 Grammar for ML Basis Files

The syntax of ML Basis files is given by the syntax for basis expres-
sions (bexp) and basis declarations (bdec), as defined below. We
assume a denumerable infinite set of basis identifiers BId, ranged
over by bid. We use longbid to range over long basis identifiers,
that is, non-empty lists of basis identifiers separated by a punctua-
tion letter (.). We further assume a denumerable infinite set MIbId
of MLB file identifiers, ranged over by mlbid, and a denumerable
infinite set Uld of program unit identifiers, ranged over by uid. Fi-
nally, we assume p to range over possible source program units
SrcProg.

= bas bdec end
| let bdec in bexp end
| longbid

bexp

bdec bdec bdec

€

local bdec in bdec end

basis bid = bexp

open longbid

mlbid > bdec

uid > p

We refer to the above grammar as the annotated MLB grammar
and the above grammar with the “> bdec” and “> p” parts removed
as the unannotated MLB grammar. Moreover, we refer to the above
grammar with the construct “mlbid > bdec” removed as the MLB
file free MLB grammar.

Notice that the MLB grammar much resembles the grammar
for structure declarations and structure expressions in Standard
ML [22], but without support for signatures and functors. For
simplicity, no Standard ML language constructs have been lifted
to the level of ML Basis Files, which leads to a cleaner separation
between an actual compiler implementation and an implementation
of the cut-off incremental recompilation framework.

Because module identifiers have no special status in the frame-
work, information about type constructors and value identifiers is
propagated across program unit boundaries just as well as informa-
tion about signatures, structures, and functors.

2.2 A Note on the Semantics of ML Basis Files

We shall not in this paper give a concrete static semantics for ML
Basis Files based on a static semantics for the concrete embedded
language, as in [12]. Nor shall we present a dynamic semantics for
ML Basis Files based on a dynamic semantics of the embedded
language. Instead, we shall define the semantics of ML Basis Files
as the result of ML Basis File compilation, which, as we shall see,
is defined in terms of the individual translation steps in a compiler.

3. Foundation of Compilation

In this section, we develop the concept of compilation based on
individual translation steps in a compiler. At each translation step,
compile time information is allowed to migrate across compilation
unit boundaries in so-called translation environments, whose prod-
uct make up what we shall define as compilation bases.

We stress here that compilation abstracts over the particular
translation steps used in a compiler, but that each translation step
must meet certain requirements, as specified in the sections to
follow.

3.1 Translation Environments

We assume a denumerable infinite set Name of names, ranged over
by n. For simplicity, we assume that source program identifiers
are members of Name. The set of all subsets of Name is written
NameSet and we use IV to range over NameSet. The disjoint
union of name sets N and N’, written N & N’, equals N U N’,
but is defined only when N N N’ = (). When A is any object (or
sequence of objects), we write names(A) to mean the set of names
that occur free in A; we assume that what free means is defined for
actual objects used in the framework.

A (translation) environment E for a translation step in the
compiler is a finite map from names to translation objects; we use
T to range over translation objects for some translation step, but we
shall not define translation objects here, as such objects are specific
to actual translation steps. However, we assume a notion of equality
on translation objects; when 71 and 7> are translation objects, we
write 71 = 7o iff 71 equals 7. When f is a finite map, we write
Dom(f) and Ran(f) to denote the domain and co-domain of f,
respectively. The set of names that occur free in an environment E,
written names(E), is the set Dom(E) U names(Ran(FE)).

We now define a relation on environments called enrichment:

DEFINITION 1 (Enrichment). An environment E; enriches an-
other environment Es, written E1 1 Es, iff Dom(E1) 2 Dom(E>)
and F1(n) = Ex(n) for all n € Dom(FE>).

Enrichment is reflexive, transitive, and antisymmetric, thus, for a
given translation step in the compiler, enrichment defines a partial
order on environments. The restriction of a finite map E to a set
N C Dom(E), written E | N, is the finite map with domain N
and values (E | N)(z) = E(z) forallz € N.

We define the extension of an environment F with an envi-
ronment E’, written E + E’, as the environment with domain
Dom(E) U Dom(E’) and values

E'(z) if x € Dom(E")
(E+ E"Y(z) =< E(z) if x € Dom(E) \ Dom(E")
undefined otherwise

3.2 Translation Steps

We use p to range over program units (of some translation step) of
the compiler. When p is a program unit, we write uses(p) to mean
the set of names that appear as uses in p and we write decls(p) to
mean the set of names that are declared by p; declared names of a
program unit do not alpha-vary.

In our framework, each translation step is assumed to be given
on the form

EFp=13N.(Ep)

where E and E’ are environments, p is a source program unit for
the translation step, p’ is a target program unit for the translation
step, and NV is the set of names that are generated during translation.
Sentences of this form are read “p translates to IN.(E’,p’) in
E.” The prefix 3N in the object IN.(E’, p’) binds names and we
consider objects of this form equal up to renaming of bound names.
We sometimes use P to range over objects of the form IN.(E, p).

The framework assumes a set of properties be met. First, used
and declared names of a program must relate appropriately to
environments and generated names must be mentioned explicitly
in the names set N:

PROPERTY 1 (Name relations). If E + p = IN.(E’,p’) then

1. uses(p) C Dom(E)

2. decl(p) = Dom(E")

3. names(E’,p’) C N Unames(FE, p)

4. uses(p’) C names(Ran(E | uses(p)))

Property 1(4) states that used names of a target program unit of
a translation step must stem from propagating uses of the source
program unit of the translation step through the translation envi-
ronment. Thus, if some translation step translates a program unit p
to another program unit p’ then there is a connection between the
uses of p and the uses of p’; we shall return to the importance of
this property in Section 3.4.

Second, each translation step is assumed to be closed under
enrichment:

PROPERTY 2 (Translation closed under enrichment). If £ + p =
®and E' J Ethen E' -p = ®.

The third property guarantees that a translation step depends
only on those assumptions for which identifiers occur free in the
source program unit:

PROPERTY 3 (Translation closed under restriction). If E + p =
® then there exists E' such that E' = E | uses(p) and E' - p =
d.

It is the combination of Property 2 and Property 3 that allows the
result of compiling a program unit to be reused.
Finally, each translation step is assumed to be deterministic:

PROPERTY 4 (Translation is deterministic). If E + p = &1 and
El—péégthenfh = Po.

It is this last property that guarantees completeness of the sepa-
rate compilation framework. Implicitly, translation derivations are
forced to be principal in the sense that if some derivation £/ - p =
®; is possible then no other derivation £ = p = ®o with $o
“stronger” than @, is possible [5, 20].

An Example: In-lining of open terms. As an example, we now
consider a translation step for inter-module in-lining of small, pos-
sibly open, functions. For the example, we are considering the fol-
lowing two intermediate language programs, pa and pp for pro-
gram units A and B, where a, b, £, and x are names, and ref, !, and
+ are considered built-in constructs:

pa = val a = ref 5
fun f x = x + la

pe = val b =f 3

We now assume that the in-lining translation step for pa is given
by the judgement

{} F pa = 3{}.(Ea,pa) 1)
where

and p’y = pa (no in-lining has occurred). Assuming program unit
B follows immediately after A, the in-lining translation step for pg
is given by the judgement

Ea b ps = 3{}.(Es, pb) (@)
where Eg = {b+— _} and
pg = val b =3 + la

with the body of the function £ in-lined. There are two important
points to be made here. First, notice that Property 1 (in particular,
part 3 and part 4) holds for both (1) and (2). This point demonstrates
that the framework is flexible enough to support propagation of
open terms (i.e., terms containing free occurrences of names). Sec-
ond, notice that soundness of the actual in-lining procedure must
be established outside of the framework.

3.3 Compilation Bases

For the purpose of composing translation steps to form a notion
of compilation, we first define a notion of compilation basis. A
(compilation) basis B is a sequence Fj.---.E, of one or more
translation environments. We use CompBasis to denote the set of
all compilation bases. The translation environment E;, 1 < ¢ < n,
in this sequence provides assumptions for the ¢th translation step
in the compiler. The set of names that occur free in B, written
names(B), is the set names(E;) U ... U names(Ey).

Enrichment is extended to bases. A basis B = FEi.---.E,
enriches another basis B’ = Ei.---.E,, written B 1 B, if
E; JE;forallie {1,---,n}.

Enrichment on bases is reflexive, transitive, and antisymmetric.
These properties follow from the properties of enrichment on en-
vironments. It follows that enrichment on bases defines a partial
order on bases.

The restriction of a basis B to a name set IV, written B |} N, is
defined inductively by the following equations:

EYN = E|N
(E.B) § N (E | N).(BIN) ©)
where N’ = names(Ran(E | N))

Equation 3 is best illustrated with a small example. Consider the
basis B = E1.FE> composed by the two environments F1 = {a —
t,b— s,crthand E; = {t — l1,s — lo}, where a, b, ¢, s, t,
l1, and [are names. Then the restriction of B to the name set {a}
is the basis {a — t}.{t — I1 }.

We now demonstrate some properties, which describe the rela-
tionship between enrichment and restriction.

PROPOSITION 1. If B J (B’ |} N)and N' C N then B 1 (B’ |
N').

PROOF The proof is by induction on the structure of bases. O

We now show that if some basis B enriches another basis By
and if By is identical to By restricted to some name set IV then By
equals B restricted to V.

PROPOSITION 2. [f B J Bo and By = By || N then Bo = B |}
N.

PROOF The proof is by induction on the structure of bases. |

Extension of translation environments (+) is lifted to extension
of compilation bases by point-wise extension. The closure of a
compilation basis B with respect to another compilation basis
By, written Closp, (B), is defined as follows—in case By is “big
enough”:
Closp, (B) = (Bo + B) { Dom(B)

3.4 Compilation

Compilation is defined in terms of translation steps. The rules for
compilation allow inferences among sentences of the form

BFp=3N.(B,p)

where B and B’ are bases, p is a source program unit, p’ is a
target program unit, and /N is the set of names that are generated
during compilation. Sentences of this form are read “p compiles to
3AN.(B',p’) in B Again, the prefix 3N in the object IN.(B’,p’)
binds names and we consider objects of this form equal up to
renaming of bound names. We refer to bases in objects of the form
3N.(B, p) as export bases.

Program units ’ Bt p=3N.(B'p) ‘

Erp=3N.(Ep)

4

Erp=3N.(E.p) @)
Erp=3N.(E'p') (NUN')Nnames(E.B)=10

Brp = 3N .(Bp") N Nnames(E',p')=10)

EBFp=3(NwN).(E'B,p")

The side conditions in (5) ensure that generated names are
unique.

The following proposition states that compilation of a program
unit depends only on the part of the basis that describes names used
in the program unit:

PROPOSITION 3 (Compilation closed under restriction). If B
p = 3IAN.(B',p') then there exists B"” such that B” = B |
uses(p) and B" +p = IAN.(B',p).

PROOF By induction over the structure of bases. The proof makes
essential use of Property 1(4), the usage propagation property of
translation steps. |

The following proposition states that compilation of a program
unit is closed under enrichment of bases:

PROPOSITION 4 (Compilation closed under enrichment). If B +
p = 3AN.(B',p') and B” 1 B then B" + p = AN.(B’,p').

PROOF The proof is by induction over the structure of bases. [

Finally, due to the property that translation steps are determin-
istic, compilation is deterministic:

PROPOSITION 5 (Compilation is deterministic). If B + p =
E|N1.(B1,p1) and B + P = ElNQ.(BQ,pQ) then E|N1.(B1,p1) =
3N2.(Bz7p2).

PROOF The proof is by induction on the structure of bases. |

4. MLB Compilation

As mentioned, we present MLB (re)compilation management in
two steps. In this section, we present a set of MLB compilation
inference rules, which closely resembles the MLB static semantics
of [12]. Then in Section 5, we present a set of MLB recompilation
inference rules, which closely resembles an implementation based
on serialization and deserialization [16] for storing and loading
bases from appropriate files on a file system.

The essence of MLB compilation management is to convert
source code, as provided by an MLB file, into sequences of linkable
object code. We use m to range over sequences of object code:

m = c|e|mm

We use CodeSeq to denote the set of all possible object code
sequences.

When two sequences m1 and mz are put together to form the
sequence m = m; ; ma, the sequences m1 and mo are implicitly
linked in the sense that used names of mg may be bound by
declared names of m1. The set of declared names of m is the union
of the declared names of m; and ms. Moreover, the set of used
names of m is the union of used names of m1 and the subtraction
of the used names of mo with the declared names of m . Sequences
of object code are considered equal up-to removal of empty object
code (¢€) and associativity of the sequence operator (;).

Further semantic objects used for compilation management in-
clude the following:

I' € ExtCompBasis = CompBasis

x (BId fn ExtCompBasis)
C € MlbCache = Mlbld
3 (ExtCompBasis U {NONE})

An extended compilation basis (I') is a product of a compilation
basis and a finite map from basis identifiers to extended compilation
bases. An ML Basis cache (C) is, essentially, a finite map from
MLB file identifiers to extended compilation bases. Intuitively, ML
Basis caches are used to guarantee that an ML Basis file is compiled
at most once; succeeding references to an MLB file make use of the
first compiled instance of the MLB file, by checking if a compiled
instance of an MLB file is already present in the ML Basis cache.
The ML Basis cache is also used to enforce that there are no cycles
in the MLB-file dependency graph.

We sometimes silently inject objects into products when the
meaning is obvious from the context. For instance, we often write
{} to denote the extended compilation basis ({},{}).

We now present a set of inference rules for specifying MLB
compilation. The inference system allows inferences among sen-
tences of the form

T, C \ phrase = 3IN.(T',m, C")

where phrase ranges over either basis expressions or basis decla-
rations. Sentences of the above form are read: “In the extended
compilation basis I' and MLB cache C, phrase compiles to an ex-
tended compilation basis I'’, link code m, and MLB cache C’, with
N being a set of newly generated names.” We consider compilation

results AN.(T',m, C) identical up-to capture-free renaming of the
bound names N.

I, C F bexp = AN.(I",m,C")

Expressions

T, C F bexp = AN.(T',m,C")
T, C + bas bdec end = IN.(I",m,C")

(6)

P,C = bdec = HNl.(Pl,thl)
I + Fl,C +C1 F bexp = HNQ.(FQ,WIQ, 02)
names(I', C)N Ny =@ names(I',C,T1,C1) N N2 =10
m = mai;mo Cl201+02 N = N1 W Ny

T, C F let bdec in bexp end = IAN.(T2,m,C")

Q)

I'(longbid) = T"
T, C + longbid = 30.(T", ¢, {})

(®)

Declarations ’ T',C + bdec = IN.(T",m,C") ‘

I, C F bdecy = 3IN1.(T'1,m1,Ch)
I+ ic + C1 F bdecy = EINz.(FQ,WLQ,CQ)
names(I', C)N N1 =@ names(I',C,T1,C1) N Na =10
0/2014—02 N = N1 W Ny F/:F1+F2

9
T, C + bdeci bdecz = AN.(T',m1;m2) ©
10
T,CFe=30.((he) (10
F,C F bdeci = 3N1.(F1,m1,C’1)
I'+1y, C 4+ C1 + bdecy = 3N2.(F27 ma, CQ)
names(I', C)N Ny =@ names(I',C,T1,C1) N Na =10
C/:C1+02 N = N1 W Ny m = mai;msa (1
T, C F local bdecy in bdecs end = IN.(T's, m, C")
T, C t+ bexp = AN.(T',m,C") (12)
T, C I basis bid = bexp = AN.({bid — I}, m,C")
T(longbid) =T (13)
T, C I~ open longbid = 30.(T",&,{})
Btp=3N.(Bc) (14)
(B,.),C uid>p = IN.(Closg(B'),c, {})
C(mlbid) =T’ T’ # NONE (15)
T, C + mlbid > bdec = 30.(I",¢,{})
mibid ¢ Dom(C')
{}, C + {mibid — NONE} I bdec = IN.(I'',m,C") (16)

T,C F mibid > bdec = IN.(T",m,C’ + {mlbid — I"})

There are several points to be made here.

First, notice the side conditions on the choices of the exis-
tentially quantified name sets in rules (7), (9), and (11). These
side conditions ensure that names are chosen sufficiently fresh
[14, 15, 26].

Second, to motivate the need for Closg(B’) in (14), consider
a compiler with two translation phases; one that translates source
program identifiers into intermediate language names and one that
implements a simple constant-propagation phase. Further, consider
the following MLB declaration (annotated with file contents):

local A.sml > "val a = 5"
in B.sml > "val b = a"
end

C.sml > "val ¢ = b"

Compiling A (i.e., A.sml) may result in a basis B1 = {a —
[}.{l — 5}, where [is a freshly generated intermediate language
name. Moreover, compiling B in the compilation basis B may re-
sult in the basis B2 = {b +— [}.{}. Now, without closing B> with
respect to Bi, the constant propagation pass will fail to propagate
the value of 5 for b in C. On the other hand, compiling C in the
basis Closp, (B1) = {b — I}.{l — 5} can successfully make use
of the constant propagation compilation phase. This example illus-
trates the importance of ensuring that compilation always occurs in
closed bases.

Third, notice that the rules for MLB file references ensure
that there are no cyclic references to MLB files and that each
MLB file is compiled only once, but that the compilation re-
sult can be used multiple times by referring to the MLB file
multiple times. Moreover, notice that if I';C + phrase =
AN.(IY,m,C") is derivable and phrase is MLB file free then
I,{} + phrase = 3N.(I',m,{}) is derivable. In the fol-
lowing, we shall writte T' + phrase = 3IN.(I',m) to mean
T, {} & phrase = 3IN.(T",m, {}).

5. MLB Recompilation Management

In this section, we present a set of MLB inference rules for cut-off
incremental recompilation, which are straightforward to implement
based on techniques for serializing and deserializing bases [16]
from appropriate files on a file system.

A repository R maps source paths to products (B, p, N, B’, c),
where B is an import compilation basis, p is the source program
unit, N is a set of names generated during compilation, B’ is an
export compilation basis, and c is the generated object code:

R € Rep=Ul fn CompBasis x SrcProg
x NameSet x CompBasis x Code

Notice that names in /N do not alpha-vary.
A repository R is well-formed if for all (B,p,N,B’,c) €
Ran(R), we have B+ p = AN.(B’,c) and B = B |} (uses(p)).
Before we present the inference rules for recompilation man-
agement, we define a boolean function for determining if recompi-
lation of a program unit is necessary. The function, named Reuse,
is defined as follows:

Reuse(R, B, uid, p) =
R(Mld) = (Bovplz N, Bl? C) A
B 1By A
p=p
The intuition here is that, in contexts where R is known to be
well-formed, the function Reuse can be used to determine if a
judgement from the repository may be used instead of deriving a
new judgement.
Source lists (ranged over by L) and dependency maps (ranged
over by D and M) are defined as follows:

L € SourceList = UId®

M € BidDepMap = BId 22 DepMap

D € DepMap = SourceList x BidDepMap
When D = (L,M) and D’ = (L', M'), we define D & D’
to mean (LQL', M + M'), where @ denotes list concatenation.
Associativity of @ follows from associativity of @ and +.

We now present a set of inference rules for MLB recompila-
tion management. The inference system allows inferences among

sentences of the form
Ro, R, D \- phrase = D',3N.(m, R')

where phrase ranges over either basis expressions or basis declara-
tions. Sentences of the above form are read: “Under the repository
assumptions Ro, R, and dependency map D, phrase compiles to
a new dependency map D', repository R’, and link code m, with
N being a set of newly generated names.” Whereas the repository
assumption Ry serves as the repository from which compilation
judgements can be reused during recompilation management, R
and R’ serve to accumulate new repository judgements to be used
for future recompilations.

Notice, that in objects of the form 3N.(m, R), the name set N
binds names and two such objects are considered identical up-to
capture free renaming of bound names.

Also notice that the link code m in the judgements are used
to relate the MLB recompilation semantics to the simpler MLB
compilation semantics from Section 4.

Expressions Ro,R,D + bexp = D',AN.(m, R') ‘

Ro, R, D bexp = D', 3N.(m, R')

17
Ro, R, D F bas bdec end = D', 3IN.(m, R') a7
Ro, R, D + bdec = D1,5|N1.(m1,R1)
Ro,R+ Rl,D ® D1+ bexp = DQ, HNQ.(mQ,RQ)

N =Ni1W Ny m=mi;me R,:R1+R2

NiNnames(R) =0 N> Nnames(R,Ry) =0 (18)

Ro, R, D | 1let bdec in bexp end = Do, 3IN.(m, R')
D(longbid) = D’
(tongbid) o)

Ro, R, D + longbid = D’,30.(g,{})

Declarations] Ro, R, D\ bdec = D', 3IN.(m, R') ‘

Pio,]’%7 D & bdeci = D1,5|N1.(m1,R1)
Ro, R+ R1,D & D1+ bdeca = D3, EINQ.(mQ, Rg)
N=NiwWNy R =Ri+Rs D =Di&D>
N; Nnames(R) =0 Nz Nnames(R,R1) =0

20
Ro, R, D + bdeci bdecy = D’,3N.(m1;ma, R') (20)

@n

Ro, R, D e = ([l,{}), 30.(¢,{})

Ro, R, D & bdec, = D1,3N1.(m1,R1)
Ro, R+ R1,D & D1+ bdeca = D3, EINQ.(mQ, RQ)
N =N1W Ny m=mi;ms R =R+ R2
N; Nnames(R) =0 Nz Nnames(R, R1) =0

Ro, R, D local bdecy in bdecs end = Do, 3IN.(m, R')

Ro,R,D F bexp = D',AN.(m, R')
D" = {bid — D'}
Ro, R, D + basis bid = bexp = D" ,3IN.(m, R')

(23)

D(longbid) = D’

24
Ry, R, D + open longbid = D', 30.(¢, {}) (24

—Reuse(Ro, B,uid,p) L of D = [uidy,- -, uid,]
R(mdl) = (Bi7pi, Ni, Bll-,ci) 1= [l’l’L]
B=Bi{+:--+ B, Bo= B uses(p)
Btp=3N.(B',c) B" =Closg(B’)

R’ = {uid — (Bo,p, N,B",c)} N Nnames(R) =0
Ro, R, D + uidv>p = [uid],3N.(c, R)

(25)

(22)

Reuse(Ro, B, uid,p) L of D = [uid1,- - -, uidy]
R(uzdl) = (Bi,pi,Ni,Bll-,Ci) 1= [ln]
B=Bj+ -+ B, NnNnames(R) =10
Ro(uid) = (Bo,p’, N,B’,c¢) R’ = {uid — Ro(uid)}
Ro, R, D F widv p = [wid], 3N.(c, R

(26)

Notice how the rules propagate program unit dependencies in
source lists and dependency maps. Dependency information is used
to build compilation bases in rules for compilation (25) and reuse
(26). In these rules, the current source list is used for determining
which compilation bases should be extracted from the repository,
so as to form the compilation basis to be used for checking if
recompilation is necessary (and for compilation in case rule (26)
does not apply).

Rule (26) allows for a compilation result in the repository for
uid to be reused if certain side conditions hold. First, the program
unit must not have changed since the result was stored in the repos-
itory. This requirement is expressed in the rule with the side con-
dition p = p’; in an implementation, file modification dates or
cryptographic check-sums may be used to check for this require-
ment. Second, the basis constructed from the dependency informa-
tion must enrich the import basis of the repository entry for the
program unit. Finally, the generated names of the object found in
the repository must be fresh with respect to the repository R.

Rule (25) corresponds to compilation. If the side condition in
this rule is satisfied then there is no object in the repository that can
be reused; thus, the program unit must be (re)compiled. It is never
the case that both rule (26) and rule (25) are applicable, given Ry,
R, D, and bdec.

The rules for recompilation are non-deterministic because the
choice of the name set /Ny in rule (20), for instance, has influence
on whether rule (26) is applicable for program units in bdecz. This
non-determinism, however, has no influence on the correctness
result that we shall demonstrate. However, the flexibility in the rules
is exactly what allows for cut-off recompilation. We shall return to
this issue in Section 5.2.

We note here that the implementation of the recompilation
framework in the MLKit makes a few optimizations to make it
cheaper to check whether recompilation is necessary than first
loading all dependent compilation bases; we will come back to
this implementation aspect in Section 6.

5.1 Properties of the Recompilation Semantics

We now present some properties of the MLB recompilation seman-
tics.

We have earlier argued (in Section 4) for the importance of
closing compilation bases. We say that a compilation basis B is
closed if B = Closy} (B). Moreover, we say that a repository R is
closedif forall (B,p, N, B’, c) € Ran(R), the bases B and B’ are
closed. The following proposition states that compilation results in
closed repositories:

PROPOSITION 6 (Compilation Closedness). Assume Ro and R
closed. If Ro, R, D = phrase = D’,3N.(c, R") then R’ closed.

PROOF The proof is a simple inductive argument on the structure
of phrase, making use of the properties that if B and B’ are closed
then so are B + B’ and B || N’, where N’ C Dom(B). |

Well-formedness of repositories is preserved by compilation, as
stated by the following proposition:

PROPOSITION 7 (Preservation of Well-formedness). Assume R
and R well-formed. If Ro, R, D + phrase = D', 3N.(m,R')
then R’ is well-formed.

Also the proof of Proposition 7 follows a simple inductive argu-
ment.

Correctness of the recompilation framework, in the sense that
the result of compilation is independent of whether repository
judgements have been used, is expressed by the following theo-
rem:

THEOREM 1 (Recompilation Correctness). Assume Ri, R, and
Ry are well-formed. If Ri,R,D + phrase = D’,3N.(m,R’)
then R, R, D & phrase = D', 3N.(m, R').

PROOF (Sketch) The proof follows a simple inductive argument
and makes use of Proposition 3, Proposition 4 and Proposition 5. [

The following two corollaries follow immediately from Theo-
rem 1:

COROLLARY 1 (Recompilation Soundness). Assume R is well-
formed. If R1,{},[| & phrase = D', 3N.(m, R') then {}, {},[] F
phrase = D', 3N.(m, R').

COROLLARY 2 (Recompilation Completeness). Assume R is well-
formed. If {},{}, | b phrase = D', 3N.(m, R) then R1,{},[] b
phrase = D’ ,AN.(m, R).

Corollary 1 expresses that the same compilation result as one
obtained from compiling in an arbitrary well-formed repository can
be obtained by compiling “from scratch” in an empty repository.
Corollary 2 expresses that instead of compiling in the empty repos-
itory, the same result can be obtained by compiling in any well-
formed repository.

5.2 Non-Determinism and Matching

As mentioned earlier, the rules for MLB recompilation are non-
deterministic in the sense that the choice of the name set N7 in
rule (20), for instance, may influence whether rule (26) is applica-
ble for program units in bdecs.

Almost all non-determinism may be eliminated by always gen-
erating fresh names during compilation and by allowing renaming
of bound names only in rule (25) when the program unit p is com-
piled to the object AN.(B’, c). At this point, if an object is avail-
able in the repository for the program unit identifier uid and B is
the associated export basis in the repository, the goal is to choose
the name set N such that the basis B’ agrees, on as many entries
as possible, with B. In an implementation, the process of renaming
N can be done by matching the basis B’ to agree with the basis
B on as many entries as possible. Now, the reason it is not pos-
sible to eliminate the non-determinism completely is that different
choices of the name set IV can satisfy agreement for B and B’ for
different entries and thus may result in different repository objects
being reused. As a simple example, assume a compilation basis
is an environment that maps program variables, ranged over by a
and b, to machine code labels, ranged over by [. Further, assume
B = {a ~ l1,b > l2}, for some distinct machine code labels [;
and l2, and assume IN.(B’,c) = 3{i}.({a — I,b — 1}, c), for
some c. There are now two possibilities for the choice of NV, each
of which satisfy agreement for either a or for b, exclusively.

5.3 Relating the Compilation and Recompilation Semantics

For relating the MLB compilation semantics with the more compli-
cated MLB recompilation semantics, we first define a binary con-
sistency relation I' || p R between an extended compilation basis I'
on one side and a pair of a dependency map D and a repository
R on the other side. The consistency relation is defined inductively
over the structure of I and D as follows:

Basis Consistency

I'llp R
L = [uidy, -, uidy)

R(uldl) = (Bi,pi,Ni,B,E,Ci) i=1.n
B=Bi+ -+ B, Dom(BB) =Dom(M)
Vbid € DOHl(BB).BB(bid) H(M(bid)) R

(B, BB) ||(L.ar) R

The following proposition states the compositional property of
consistency:

@7

PROPOSITION 8 (Consistency Merging). IfT'||p RandT" ||ps R+
R’ and Dom(R) N Dom(R') =0 then T + I ||pgp' R+ R'.

PROOF (Sketch) By induction over the structure of I' using IV =
{} and D" = [] at the inductive step to get I'||p R + R’ before
establishing the conclusion from the definition of consistency. [

The following proposition states that consistency is preserved
under lookup of long basis identifiers:

PROPOSITION 9 (Consistency Lookup). If T'||[p R and T’ =
I'(longbid) then T" || ps R, where D' = D(longbid).

PROOF By induction over the structure of longbid. |

We can now state a theorem saying that the MLLB compilation
semantics is equivalent to the MLB recompilation management
semantics:'

THEOREM 2 (Semantics equivalence). IfT'||p Rand T - phrase =
AN.(TY,m) then {},R,D + phrase = D' ,3IN.(m,R') and
I|pr R+ R.

PROOF By induction over the structure of phrase. See Appendix A
for a detailed proof.

6. MLB Recompilation in the MLKit

The MLKit [31, 32] is a Standard ML compiler, which allows for
type and compilation information to migrate across module bound-
aries at compile time [14, 15] using the framework presented in
this paper. Compilation is defined as the composition of a series
of translation phases, which includes type inference, various opti-
mizing translations [6], elimination of polymorphic equality [13],
region inference [30, 33], various region representation analyses
[7], closure conversion, instruction selection, and register alloca-
tion. Many of the translation phases make use of the possibility
of passing information across compilation unit boundaries. For in-
stance, region inference is a type-based analysis, which associates
function identifiers with so called region type schemes that pro-
vide information about in which regions arguments to the function
should be stored and in which regions the result of the function is
stored. Because region inference tracks the effects (represented as
graphs) of calling the function, region type schemes can become
large compared to the underlying ML type schemes, which also
leads to large compilation bases.

For the MLKit instance of the framework, elaboration informa-
tion typically amounts to only five percent of the total size of com-
pilation bases, thus, some overhead must be expected compared to
compilers that propagate only elaboration information across pro-
gram unit boundaries. Yet, the MLKit instance of the framework
is used extensively in practice both for compiling the MLKit itself
and in the context of SMLserver [17, 18], a platform for program-
ming Web applications in Standard ML. SMLserver is used as the

! Notice that we do not consider objects of the form IN.(T', m) equal up-to
removal of names in N that do not appear in I" and m.

development and production platform for a variety of administra-
tive Web applications (more than 250.000 lines of Standard ML)
at the IT University of Copenhagen, including a course evaluation
system, online course registration and course administration sys-
tems, and a human resource system. For all the systems, MLB files
are used for organizing and grouping source files and common li-
braries.

In the remainder of this section, we will comment on some is-
sues we have found important in relation to the practical implemen-
tation of the framework in the MLKit.

6.1 Serialization and Deserialization of Compilation Bases

The MLB recompilation semantics presented in Section 5 allows
for a straightforward implementation of the framework with reposi-
tory information (compilation bases and target code) stored on disk.
For storing compilation bases on disk, the MLKit makes use of
a serialization library, written in Standard ML [16]. Efficiency of
serialization and deserialization as well as efficiency of summing
compilation bases (+) turn out to be critical. On a 2.8GHz Intel
Pentium 4 Linux box with 512Mb of RAM, measurements show
that serialization of all compilation bases for the MLKit implemen-
tation of the Standard ML Basis Library takes 14.2 seconds and
amounts to 1.88Mb of data. The data includes, for instance, region
type schemes for all visible identifiers and inline code for small
functions propagated by the MLKit inter-module optimizer.

Deserialization and summing of all compilation bases for the
library takes only 4.0 seconds, which, however, is still too costly for
ordinary use; notice that almost all files in a programming project
depends on the Standard ML Basis Library. In Section 6.3, we
describe a technique for minimizing further the deserialization of
compilation bases. The implementation uses Patricia trees [25, 23]
for representing translation environments, which leads to close to
constant-time summing of deserialized compilation bases.

Compilation bases and target code are stored on disk in a di-
rectory MLB located in the same directory as the program unit.
Thus, deleting the MLB directory effectively resets the repository
(although, as we have shown, this should not be necessary.)

Matching in the MLKit is composed from matching functions
for each translation step in the compiler. In the case that matching
results in the resulting compilation basis to be identical to the
compilation basis for the unit in the repository, the MLKit avoids
the serialization of the compilation basis.

6.2 A More Liberal Dependency Analysis

The dependency analysis integrated with the MLB recompilation
semantics in Section 5 assumes that each source file identifier
appears at most once in the MLB files for an entire program.
The MLKit implements a more liberal dependency analysis, which
allows for two different program units with the same name to
appear in different MLB files.

For making unique names, the MLKit makes use of the above
requirement by assuming that for each program unit uid, the pair
(uid, mibid) is unique, where milbid denotes the MLB file referring
to the program unit. In effect, one can think of repositories not to
be indexed by program units, but instead to be indexed by pairs of
a program unit and an MLB file.

6.3 Separating Elaboration and Compilation Bases

Although the dependency analysis integrated with the MLB recom-
pilation semantics in Section 5 limits the number of bases to be de-
serialized upon compilation of a program unit, it is still possible,
using a source code dependency analysis, to decrease the number
of bases to be deserialized.

Unfortunately, source code dependency analysis for Standard
ML is possible only by integrating the dependency analysis with a

kind of elaboration so as to determine which identifiers have con-
structor status [22]. The reason for this is that an occurrence of an
identifier with constructor status in a pattern should not be consid-
ered a binding occurrence of the identifier. To be sound with respect
to the semantics of Standard ML, the MLKit takes the approach of
storing the elaboration part of a compilation basis separately from
the compilation basis proper. Whereas it is still necessary to dese-
rialize and sum all elaboration bases corresponding to the program
units the particular compilation unit depends on, compilation bases
need only be deserialized for those program units that the compila-
tion unit refers to.

For the MLKit implementation, elaboration bases typically
amount to only five percent of the size of the corresponding compi-
lation basis. In effect, deserializing all dependent elaboration bases,
running the source code dependency analysis on the compilation
unit, and deserializing only the compilation bases that the compila-
tion unit refers to amounts to less than one second for each source
file of a typical large program (such as the MLK:it itself).

6.4 Using Time Stamps to Avoid Unnecessary Deserialization

The MLB recompilation framework implemented in the MLKit
makes use of time stamps to avoid unnecessary deserialization of
bases, when possible. Consider rule (26). If all files containing the
bases B;, i = 1..n, are older than the file containing the target
code c then reuse is immediately possible (without deserializing
bases), provided the source code is unchanged and the dependency
information is unchanged. Only when time stamps cannot be used
to conclude that reuse is safe are bases deserialized and strong
enrichment used to check for the possibility of reuse.

The above optimization is enhanced by the following test: If,
after compiling a program unit, matching results in the export
compilation basis to be identical to the export compilation basis
for the program unit in the repository then serialization of the
compilation basis is avoided, which leaves intact the time stamp
of the file containing the export compilation basis.

7. Conclusion and Future Work

We have presented a framework for cut-off incremental recompila-
tion and shown that recompilation in this framework, with respect
to so-called well-formed repositories, is both sound and complete.
The framework is based on particular abstract properties of individ-
ual translation phases of a compiler and supports even open terms
(objects containing free occurrences of names) to propagate across
program unit boundaries.

There are several possibilities for future work. First, improving
the efficiency of the underlying serialization techniques would fur-
ther improve the overall compilation and recompilation times. Sec-
ond, it could make sense to explore the possibilities for extending
the MLB language with functional features.

References

[1] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective
recompilation and environment processing. ACM Transactions on
Software Engineering and Methodology, 3(1):3-28, January 1994.

[2] Ravi Sethi Alfred V. Aho and Jeffrey D. Ullman. Compilers
Principles, Techniques and Tools. Addison Wesley, 1986.

[3] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Even more
principal typings for java-like languages. In ECOOP Workshop on
Formal Techniques for Java Programs (FTfJP 2004), June 2004.
Oslo, Norway.

[4] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Polymorphic
bytecode: Compositional compilation for Java-like languages. In
32nd ACM Symposium on Principles of Programming Languages
(POPL’05), pages 26-37. ACM Press, January 2005.

[5] D. Ancona and E. Zucca. Principal typings for java-like languages.
In 31st ACM Symposium on Principles of Programming Languages
(POPL’04), pages 306-317. ACM Press, January 2004.

[6] Andrew W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

[7] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region
inference to von Neumann machines via region representation
inference. In ACM Symposium on Principles of Programming
Languages (POPL’96), pages 171-183. ACM Press, January 1996.

Matthias Blume. CM, a compilation manager for SML/NJ. Technical
report, Princeton University, Department of Computer Science, April
1995. User Manual.

Matthias Blume. Hierarchical Modularity and Intermodule Opti-
mization. PhD thesis, Princeton University, Department of Computer
Science, November 1997.

[8

—

[9

—

[10] Matthias Blume and Andrew W. Appel. Hierarchical modularity.
ACM Transactions on Programming Languages and Systems, 21(4),
July 1999.

[11] Luca Cardelli. Program fragments, linking, and modularization. In
24th ACM Symposium on Principles of Programming Languages
(POPL’97). ACM Press, January 1997.

[12] Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen
Weeks. Formal specification of the ML Basis System, January 2005.
Available from http://www.mlton.org.

[13] Martin Elsman. Polymorphic equality—no tags required. In Second
International Workshop on Types in Compilation (TIC’98), March
1998.

[14] Martin Elsman. Program Modules, Separate Compilation, and
Intermodule Optimisation. PhD thesis, Department of Computer
Science, University of Copenhagen, January 1999.

[15] Martin Elsman. Static interpretation of modules. In Procedings
of Fourth International Conference on Functional Programming
(ICFP’99), pages 208-219. ACM Press, September 1999.

[16] Martin Elsman. Type-specialized serialization with sharing. In
Sixth Symposium on Trends in Functional Programming (TFP’05),
September 2005.

[17] Martin Elsman and Niels Hallenberg. Web programming with
SMLserver. In International Symposium on Practical Aspects of
Declarative Languages (PADL’03). Springer-Verlag, January 2003.

[18] Martin Elsman and Ken Friis Larsen. Typing XHTML Web
applications in ML. In International Symposium on Practical Aspects
of Declarative Languages (PADL’04). Springer-Verlag, June 2004.

[19] S. Feldman. Make—a computer program for maintaining computer
programs. Software-Practice and Experience, 9(4):255-265, April
1979.

Trevor Jim. What are principal typings and what are they good for?
In 23rd ACM Symposium on Principles of Programming Languages
(POPL’96), pages 42-53. ACM Press, January 1996.

[21] Henning Makholm. Mosmake, 2002. Available from the Web page
http://www.diku.dk/ “makholm/mosmake/.

[22] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[23] Donald R. Morrison. Patricia - practical algorithm to retrieve
information coded in alphanumeric. J. ACM, 15(4):514-534, 1968.

[24] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point
promotion. In 34th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL’07), pages 143—154. ACM Press,
January 2007.

[25] C. Okasaki and A. Gill. Fast mergeable integer maps. In Workshop
on ML, pages 77-86, 1998.

[26] Claudio V. Russo. Types for Modules. PhD thesis, University of
Edinburgh, June 1998.

[27] Zhong Shao and Andrew Appel. Smartest recompilation. In 20th

[20

ACM Symposium on Principles of Programming Languages, January
1993.

[28] David Swasey, Tom Murphy VII, Karl Crary, and Robert Harper. A
separate compilation extension to Standard ML. In ACM SIGPLAN
Workshop on ML (ML’06), September 2006.

[29] Walter Tichy. Smart recompilation. In ACM Transactions on
Programming Languages and Systems, pages 273-291, July 1986.

[30] Mads Tofte and Lars Birkedal. A region inference algorithm. ACM
Transactions on Programming Languages and Systems, 20(4):734—
767, July 1998. (plus 24 pages of electronic appendix).

[31] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A
retrospective on region-based memory management. Higher-Order
and Symbolic Computation (HOSC), 17(3):245-265, September
2004.

[32] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Hgjfeld Olesen, and Peter Sestoft. Programming with regions
in the ML Kit (for version 4). Technical Report TR-2001-07, IT
University of Copenhagen, October 2001.

[33] Mads Tofte and Jean-Pierre Talpin. Region-based memory manage-
ment. Information and Computation, 132(2):109-176, 1997.

[34] Spyridon Triantafyllis, Matthew J. Bridges, Easwaran Raman,
Guilherme Ottoni, and David I. August. A framework for unrestricted
whole-program optimization. In ACM Conference on Programming
Language Design and Implementation (PLDI’06), pages 61-71. ACM
Press, January 2006.

[35] Stephen Weeks. Whole-program compilation in MLton, Septem-
ber 2006. Talk at ML Workshop, 2006. Slides available from
http://mlton.org/.

A. Proof of Theorem 2 [Semantic Equivalence]

The proof is by induction on the structure of phrase. We proceed
by case analysis.

’CASE phrase = longbid‘ From assumptions and (8), we have
T'(longbid) = T", thus from Proposition 9, we have D (longbid) =
D" and I || ps R. Thus, from (19), we have {}, R, D \ longbid =
D',30.(e, R") and T || p (R + R'), as required with R’ = {}.

’ CASE phrase = uid > p‘ From assumptions we have [1] B =

BofT'and [2] B+ p = 3IN.(B’,c) and [3] B” = Closg(B’)
and [4] T’ (B”,{}). Let [5] D' = ([uid],{}). From as-
sumptions we have [6] I"||p R, thus from the definition of con-
sistency, we have [7] L of D = [uid:, - - - , uidy] and [8] R(uid) =
(B;,pi, Ni,Bi,c;),i = 1l.n and [9] B = Bj + --- B;,. From
Proposition 3 and [2], we have there exists Bo such that [10]
By = B |} uses(p). By appropriate renaming, we can assume [11]
N Nnames(R) = (. Let [12] R' = {uid — (Bo,p, N, B",c)}.
From rule (25) and [2,3,5,7,8,9,10,11,12], we have [13] {}, R, D
uid > p = D',3N.(c, R'), as required. Moreover, from [4,5,12]
and the definition of consistency, we have I || ps (R+ R'), also as
required.

’ CASE phrase = bdec: bdeca ‘ From assumptions we have [1]
N = N; W Nz and [2] N1 N names(I') = 0 and [3] N2 N
names(I','1) = 0 and [4] T + bdecy = AN1.(I'1,m1) and [5]
'+ Ty F bdeca = IN32.(T'2,m2) and [6] m = mq; me and [7]
I =T'; +I'2. By immediate induction using [4] and assumptions,
we have [8] {},R,D + bdeci = Di,3Ni.(m1,R1) and [9]
I'1||p; (R4 Ri1). Using Proposition 8, [9], and assumptions, we
have [11]T'4+T"1 ||pep, (R+R1). By induction using [5] and [11],
we have [12] {}, R4+ R1,D® D1 + bdeca = Do, EINQ.(mQ, Rz)
and [13] 'z ||p, (R + R1 + R2). By Proposition 8 and [9,13,7],
we have [15] IV || p,ep, (R + R1 + R2), as required with [16]
D' = D1® D and [17] R’ = R1 + R». By appropriate renaming,

we can assume (due to [2] and [3]) [18] N1 N names(R) = 0
and [19] N2 N names(R, R1) = (. It follows that we can apply
rule (20) to [6,8,12,16,17,18,19] to get { }, R, D + bdec: bdecs =
D',3N.(m, R'), also as required.

’ CASE phrase = local bdeci in bdecs end‘ The proof of this

case is similar to the proof for the case phrase = bdec1 bdec2, but
instead of [7], we have [7a] I” = I'>. Moreover, we need not estab-
lish [15] using Proposition 8. Instead, [13] suffices and with [7a]
and [16a] D' = D5 (instead of [16]), we have I ||p/ (R + R1 +
R5), as required. It also follows that we can apply rule (22) using
[6,8,12,16a,17,18,19] to get { }, R, D - phrase = D’,3N.(m, R’),
also as required.

The remaining cases follow similarly. O

